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Cloud Providers are investing billions $ in their backbones

TECH | KEYWORDS: CHRISTOPHER MIMS

Google, Amazon, Meta and Microsoft Weave a Fiber-

Optic Web of Power

The four tech giants increasingly dominate the internet’s critical cable infrastructure

Google to build 3 submarine cables
to battle Microsoft, AWS for cloud

customers

By Sean Buckley « Jan 16, 2018 10:19am

Microsoft, Facebook and Telxius complete
the highest-capacity subsea cable to cross
the Atlantic

People and organizations rely on global networks every day to provide access to internet and cloud
technology. Those systems enable tasks both simple and complex, from uploading photos and searching
webpages to conducting banking transactions and managing air-travel logistics. Most people are aware
of their daily dependency on the internet, but few understand the critical role played by the subsea
networks spanning the plamet in providing that connectivity.

COMPANIES > AMAZON

AWS Will Be Google and
Facebook's Neighbor on the
New US-Europe Submarine

Cable

Press release
AWS Announces Global Expansion of AWS Laocal Zones

February 16, 2022 at &:00 PM EST

Buildirg off the successful lounch of AWS Local Zones in 16 LS cities, over 30 new AWS Local Zones will deliver
single-dligit millisecond latency performance at the edge of the clowd to hundreds of millions of people worldwide

Netflix, Couchbase, Supercell, and FOX Corporation among thousands of custamers using AWS Local Zones
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Cloud Providers are investing billions $ in their backbones

Every cloud deployment is unique

Differences in infrastructure arises in AWS, Azure
and GCP through:

constraints created by geography
historical infrastructure

unique strategies and different business goals
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Cloud Providers are investing billions $ in their backbones

Every cloud deployment is unique

How to map the topology: traditional approaches

« Apply bag of heuristics to infer router-level
interconnectivity from traceroute measurements

* Geolocate routers with rDNS hints and generate physical
topology.
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Cloud Providers are investing billions $ in their backbones

Every cloud deployment is unique

How to map the topology: traditional approaches

« Apply bag of heuristics to infer router-level
interconnectivity from traceroute measurements

* Geolocate routers with rDNS hints and generate physical

topology.
Already described in Rocketfuel (Spring et al.
2002) more than 20 years ago!
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Cloud Providers are investing billions $ in their backbones

Every cloud deployment is unique

How to map the topology: traditional approaches

« Apply bag of heuristics to infer router-level
interconnectivity from traceroute measurements

* Geolocate routers with rDNS hints and generate physical
topology.
P 9Y Already described in Rocketfuel (Spring et al.
2002) more than 20 years ago!
Why does this not work for CP?
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Why does this not work for CP?

Historical challenges

Modern-day challenges

Dependency on the willingness of cloud

providers and ISPs to collaborate
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For the academic researcher For the network engineer at

» Getting a clearer view of hardly Google
observable topologies that  Discovering what part of my
carry a huge portion of the topology is visible from an
traffic. outsider perspective

« Comparing and contrasting
network properties of the » Monitoring your network with a
different cloud providers. new visualization of tools

* Perspective on a post-
traceroute world.
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Problem
Starting point:

Imagine that we have access to devices to

schedule measurements and we know where
they are (physically) located




Problem
Statement

Starting point:

Imagine that we have access to devices to
schedule measurements and we know where
they are (physically) located

Problem:

We are interested in discovering how they are
connected to each other




Statement
Two key ideas:

Measurements _ _
s Ee 1. Transferring complexﬂv_ from
measurement to modeling: cast the

problem as an instance of manifold

learning.
Connectivity 2. Geoqra.phv as part of tl_we
Network topological representation of the

Internet: constrain the manifold to
be on the world map.




Onto the Methodology

1) Measuring the topology

2) Creating graph through
filtrations

3) Computing Ricci curvature
4) Analysis of the graphs

5) Merging everything into a
single manifold visual



What is residual latency?

Deterministic latency

MT ND Deterministic !
MN ' latency MA
SD " fa) NY PR

P
P R
MI a ). -
¢ NJ
ME ) {
= fﬂ? of
- KS MO J speed in fiber =% * speed of light in vacuum

QK
AR

(GE COLUMBIA UNIVERSITY
I8 THE CITY OF MEW YORK



What is residual latency?

@ Queueing delays,

/ transmission delays,
B / traffic engineering,
absence of straight
path...

Observed latency
Residual latency plane

speed in fiber = % * speed of light in vacuum

Deterministic latency
plane
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What is residual latency?

We schedule ping measurements : alternate view

X(A,B) = minser (X¢)(4, B)

Real shortest latency minimize queueing delays minimize transmission delays
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What is residual latency?

We schedule ping measurements : alternate view

Building a distance matrix from the residual latency

Real | Fullmesh measurement
fiber

Threshold selection J
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2) Creating

graph through
filtrations

Building graphs

2. Graph Construction

Smallthreshold &£=30 Large threshold &=80

Inspired by Algebraic Topology filtrations
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Building graphs

2. Graph Construction
Small threshold &=30 Large threshold &=80
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2) Creating

graph through
filtrations

Inspired by Algebraic Topology filtrations

How to detect when the real
topology has been uncovered?

Gia COLUMBIA UNIVERSITY
I8 THE CITY ;

Y OF MEW YORE



Geometrization of graphs

|dea: Leveraging geometric ideas to discover shapes through

the discrete Olivier-Ricci curvature

Optimal Transport Recaps

Evaluate the cost of transferring a specific distribution /¢ of mass on the nodes
of a graph to another distribution

Two distributions: Z;L{I) =1 > u(a)=1

r

Adistance :  d(x,y) or c(x,y) is the cost of transport one unit of mass, i.e. Euclidean
distance, Manhattan distance

Opnmal transport: (p, v) = arg mE}n _.‘;.'r Olx, yidix, y). constrained to

2 zl;ﬂlx, y)=viy) forallyeV.

—

c(X.y) = |1x-y]|

ﬂmﬂh—*
=

(X, 1) (Y,v)

Z Bix,y) = pix) forallx eV
welV
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3) Computing
Ricci curvature

A worked out example

We are interested in computing the
optimal transport of this link neighbors
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3) Computing
Ricci curvature

Put dirt on the green nodes and empty boxes on the blue ones

1/3
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3) Computing
Ricci curvature

Move the weight from upper node to an empty box

1/3 ——2/15
Before After
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3) Computing
Ricci curvature

Filling a box by moving a parcel of dirt

Before After

(;1; COLUMBIA UNIVERSITY

I THE CITY OF NEW YORK



3) Computing
Ricci curvature

The edge at the middle is a bottleneck

Before After
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3) Computing
Ricci curvature

|dentifying the edges that have carried a lot of dirt

Lot of the dirts cross this
edge!
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3) Computing
Ricci curvature

Continuous and discrete curvature

(a) Surface of Negative Curvature (b) Surface of Zero Curvature (c) Surface of Positive Curvature
Negative Curvature Neutral Curvature Positive Curvature
Distribution p M Distribution pand v
[
B Distribution v

» Optimal mass displacement

‘ % :
F - ) :
— 3 - . L J E
% G . ! ﬁ. -
Most aw through The neigborhoods are well connected to Most of the masses are mingled. The

the edge (FH) each other, (FH) is only transiting its own only mass that has to be moved is the
mass one fromF to H
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3) Computing
Ricci curvature

Negative Ricci curvature matters
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4) Analyzing
the graphs

Finding interesting threshold and edges

Emergence Plot Ricei  Emergence Plot Threshold
~l
I.I
H N
H

ABECFHGII J ABECFHGI J

Sankey Diagram
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Linking back to the continuous view

This view exists for each threshold

5) Merging
everything into a
single manifold visual

Geodesic fits
physical topology
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Onto the Application

1) Data Collection

2) Building the graphs

3) Analyzing the manifold

4) Validating the manifold

5) Sensitivity analysis



1) Data

Collection

We schedule ping measurements from the different CPs

From the Cloud Public Internet in comparison

Ashbumn-Sydney

Ashburmn-Sydney (GCP). Ashbum-Sydney (Azure)

Ashburn-5an Diego

Chicago-Denver

New York-Miami
=

London-Frankfurt (GCP) London-Frankfurt

nd-NtherIands (Azure)
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2) Graph
analysis

|dentifying interesting thresholds
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Building the graphs
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2) Graph
analysis
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2) Graph
analysis

Aggregating the observation through the heatmaps
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2) Graph
analysis

How different islands of connectivity emerge and disappear
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3) Analyzing
the manifold

Building a single manifold view
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4) Validating
the manifold

Do we recover the cables according to Microsoft?
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https://www.microsoft.com/en-us/research/project/project-arno-cloudification-of-telecom-network-infrastructure/
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4) Validating
the manifold
Comparing cloud providers

Google Azure AWS
s g ' | - .,_ '—: .,_‘_"‘.- ’.
Google has not b b

o

percolated
between Europe

and US & /' ‘

-
e " -

d_a COLUMBIA UNIVERSITY
184 THE CITY OF MEW YORK




4) Validating
the manifold
Comparing cloud providers

Google Azure AWS
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AWS is the only cloud
that has a direct path
between Asia and
Europe
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4) Validating
the manifold
Comparing cloud providers

Google Azure AWS
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Google has the most
positive curvature
between NA and EU
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4) Validating
the manifold
Comparing cloud providers

Google Azure AWS
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The geodesic on the manifold predicts the latency better than

the great circle distance the GCD

Cloud City A City B Latency | dgep | dgeo | drD dcep
Sydney Tokyo 104.6 8147
Ashburn | Sao Paulo 118.3 : 7664
Dublin Tokyo 202.0 39.0 -11.3 | 11980 | 9584
Paris Singapore 155.5 -27.0 13415 | 10732
Amazon | Mumbai | Paris 104 -14.5 8761 | 7009
Osaka London 221 55.4 12205 | 9499
Mumbai London 333 2114 | 423 | 9247 | 7191
Las Vegas | Sydney 142 -74.6 | -48.7 | 16578 | 14320
Seoul Jakarta 106 14.5 6421 5293
Google | Portland | Frankfurt 124 -22.3 9872 | 7834
Sydney Tokyo 106.7 -26.3 10184 | 8147
Ashburn | Sao Paulo 117.8 -12.4 | 10.1 | 9580 | 7664
Dublin Tokyo 233.5 70.5 10.2 | 11980 | 9584
Seoul Amsterdam | 220.5 75.7 25.6 | 11263 | 8516
Azure | Singapore | Des-Moines | 194.2 -59.5 |JESGIN 17872 | 14926

4) Validating
the manifold
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5) Sensitivity
analysis

Right of way distance (or route distance) as a more appropriate metric to encapsulate
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5) Sensitivity
ERENSS

Selecting routing distance over great circle distance

Right of way distance (or route distance) as a more appropriate metric to encapsulate
topography

GCD is sufficient for our purpose

AN
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5) Sensitivity
ERENSS

Changing granularities

Selecting quotient over difference for remaining latency

Quotient is a good metric when identifying
smaller scale patterns
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5) Sensitivity
ERENSS

Changing granularities

Selecting quotient over difference for remaining latency

Quotient is a good metric when identifying
smaller scale patterns

Selecting smaller time-windows

Changing time used for selecting the
mMinRTT provides different view
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5) Sensitivity
analysis

Alternative graph metrics

Selecting Ricci curvature over different bottleneck metrics

Cut metric and betweenness centrality are
not robust metrics.
Lemma:

The maximal change in the L! of the Ricci curvature distribution that the addition or deletion of
an edge can induce is 6.
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Future steps

Sharing the manifold visualization tool and keep on improving

Its outputs
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Future steps

Sharing the manifold visualization tool and keep on improving

Its outputs

Applying the technique for Public Internet

AS2

Routing is way harder for public Internet
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Conclusions

In this presentation, we have:
1. introduced a new technique to uncover topology that was based on
Riemannian geometry.
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Conclusions

In this presentation, we have:
1. introduced a new technique to uncover topology that was based on
Riemannian geometry.

2. built visualization that facilitates the utilization of our technique.

3. compared and contrasted the network of a couple of cloud providers.

Questions?
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