
Analysis of False Negative Rates for Recycling Bloom Filters
(Yes, They Happen!)
KAHLIL DOZIER, Columbia University, US

LOQMAN SALAMATIAN, Columbia University, US

DAN RUBENSTEIN, Columbia University, US

Bloom Filters are a desirable data structure for distinguishing new values in sequences of data (i.e., messages),

due to their space efficiency, their low false positive rates (incorrectly classifying a new value as a repeat), and

never producing false negatives (classifying a repeat value as new). However, as the Bloom Filter’s bits are

filled, false positive rates creep upward. To keep false positive rates below a reasonable threshold, applications

periodically "recycle" the Bloom Filter, clearing the memory and then resuming the tracking of data. After a

recycle point, subsequent arrivals of recycled messages are likely to be misclassified as new; recycling induces

false negatives. Despite numerous applications of recycling, the corresponding false negative rates have never

been analyzed. In this paper, we derive approximations, upper bounds, and lower bounds of false negative

rates for several variants of recycling Bloom Filters. These approximations and bounds are functions of the

size of memory used to store the Bloom Filter and the distributions on new arrivals and repeat messages, and

can be efficiently computed on conventional hardware. We show, via comparison to simulation, that our upper

bounds and approximations are extremely tight, and can be efficiently computed for megabyte-sized Bloom

Filters on conventional hardware.

CCS Concepts: • Theory of computation→Data structures design and analysis; •Networks→ Network
algorithms.

Additional Key Words and Phrases: Bloom Filter, Recycling Bloom Filter, False Negatives

ACM Reference Format:
Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein. 2024. Analysis of False Negative Rates for Recycling

Bloom Filters (Yes, They Happen!). Proc. ACM Meas. Anal. Comput. Syst. 8, 2, Article 21 (June 2024), 34 pages.
https://doi.org/10.1145/3656005

1 INTRODUCTION
Bloom Filters [3] have long been used as a means for tracking repeat data items (i.e., messages) in a

sequence where repeat occurrences are possible. The Bloom Filter is a desirable structure due to its

efficient use of memory, and presumed property of only erring in the false positive direction.

However, as more new messages are inserted into the Bloom Filter, the false positive rate grows;

eventually the rate is too high for the Bloom Filter to be of use. To keep the false positive rate

below a reasonable threshold, many applications utilize what is termed in [9] a recycling Bloom
Filter (RBF for short). The RBF "recycles" by clearing all the bits, continuing its regular bit-filling

process afterward. While this helps to keep false positive rates low, it does introduce the possibility

of false negatives– subsequent arrivals of previously recycled messages can map to unset bits in the

Authors’ Contact Information: Kahlil Dozier, Columbia University, New York, NY, US, kad2219@columbia.edu; Loqman

Salamatian, Columbia University, New York, NY, US, ls3748@columbia.edu; Dan Rubenstein, Columbia University, New

York, NY, US, danr@cs.columbia.edu;

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2476-1249/2024/6-ART21

https://doi.org/10.1145/3656005

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

https://doi.org/10.1145/3656005
https://doi.org/10.1145/3656005
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656005&domain=pdf&date_stamp=2024-05-29

21:2 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

Bloom Filter, appearing new. Prior art in several domains, including Software-Defined Networks

(SDN) [19], DDoS detection [7], stateful load balancing to ensure per-connection consistency in

datacenters [20] and payload attribution [26], make use of RBFs, arguing that false negative rates

can be kept sufficiently low by recycling with limited frequency. Prior art has also proposed what

is termed a two-phase RBF [17]: the memory used to implement the RBF is split in half and two

RBFs are implemented in a manner that intuitively keeps false negative rates lower for a given false

positive rate. To our knowledge, analytically determining false negative rates for RBFs, including

the two-phase variants, has never been attempted. In this paper, we present analytical models that
can be used by practitioners to better anticipate false negative rates of their systems. An analysis of

false negative rates is challenging because it is heavily dependent on the arrival process of both

new and repeat messages. Computing exact false negative rates appears intractable, but we present

a lower bound. Additionally, we present several approaches to upper bound the false negative rate

which trade tightness of the bound with required computation time, as well as a lower-complexity

method to tightly approximate the false negative rate.

We begin in §2 by providing a brief background on Bloom Filters and review the prior art of false

positive analysis. We formulate our general model for analytically describing the false negative

rate in §3. We use Markov Modelling in §4 to generate a lower bound, three upper bound variants,

and a tight approximation, and a Renewal model in §5 to develop an extremely tight upper bound.

We verify our models using discrete-event-driven simulation in §6, and contrast performance of

the RBF variants as functions of memory size and desired false positive rates. We explore the

applicability of our bounds to actual workload traces in §7.

Of the various approaches to bounding RBF false negative rates, the Renewal Model is the most

accurate across different arrival distributions, especially when there are many new arrivals to

the distribution. However, in cases of low new arrival rates, Markov Model based bounds and

Approximations may be more computationally tractable while still retaining decent accuracy.

2 BACKGROUND
2.1 Bloom Filters
A Bloom Filter (BF) [3] implemented atop an𝑀-bit memory initially sets all memory bits to 0. An

arriving message is hashed by 𝑘 distinct hash functions, each of which maps to a bit in the array:

the bit is then set to 1, regardless of its prior status (0 or 1). When the 𝑘 hash functions are applied

to a message and the corresponding bits in the BF are set, we say that the message is recorded in the

BF. An arriving message is said to be recorded even when the corresponding bits are set prior to its

arrival, such that the new arrival does not set additional bits in the BF. Importantly, these 𝑘 hash
functions’ mappings are independent across messages, such that each message’s assignment of bits is
effectively independent from those assigned to other messages. This independence property is what

makes the BF such a powerful abstraction, as well as making it more amenable to mathematical

analysis.

For the case when a message is recorded but all of its corresponding bits are set prior to its

arrival, it is assumed that the message is a repeat of a prior message. If the message is not a repeat,

it is incorrectly classified as a repeat, i.e., a false positive.

2.2 RBF variants and Measuring False Positives
A Recycling Bloom Filter (RBF) is a BF that can be used indefinitely. The false positive rate can be

kept arbitrarily low by clearing out all the bits set in the BF. However, frequent clearing of the

BF can result in repeat messages being classified as new (false negatives), so the clearing must be

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:3

performed sparingly. One must therefore determine an acceptable false positive rate 𝑓𝑝 , and recycle

as infrequently as possible while bounding the false positive rate by 𝑓𝑝 .

2.2.1 Two-phase variants. A proposed variant of the RBF is the two-phase RBF which splits the

𝑀-bit memory into two equally sized chunks of𝑀/2 bits, using each half to implement a half-sized

RBF. At any time, one RBF is deemed active, and arriving messages are hashed into the active RBF.

During this time, the other RBF is deemed frozen, and remains unmodified. At initialization, both

RBFs are cleared. When a message arrives, its hash bits are compared to the bits set in the active

RBF and the frozen RBF. If the 𝑘 hashes all map to set bits in either the frozen or the active RBF,

the message is classified as a repeat. Upon a recycle event, the frozen filter is cleared and becomes

active while the active filter becomes frozen. In this manner, the RBF frees up memory to keep

false positives sufficiently low, while retaining some memory of the more recent arrivals. While the

two-phase RBF must be recycled more frequently to maintain a given false positive rate, intuitively

its benefit comes from its ability to retain some memory at all times of previously arrived messages,

lowering its comparative false negative rate.

2.2.2 Measuring false positive rate. We note that [9] provides detailed analysis of false positive

rates for both one-phase and two-phase RBFs, emphasizing that there are a variety of ways to

measure the false positive rate (e.g., worst case when the BF is at its fullest, or average between

recycles). There are specific intricacies that might affect the underlying false positive rate, such as

whether a given messsage maps to 𝑘 distinct bits versus permitting the 𝑘 hash functions to “collide”

and possibly map to the same bit. Our analysis is agnostic to the specific details of the underlying

false positive rate and can be applied for any of these variants. Unless otherwise specified, the

results presented here utilize what [9] refers to as the “colliding, retaining, 𝜎-bounded” variant.

3 MODEL PRELIMINARIES
Our model considers an RBF of size 𝑀 bits. We let 𝑘 be the number of hash functions applied

per arriving message. When the number of bits in the BF exceeds a threshold 𝜎 , the BF recycles,

clearing all bits. As pointed out in [9], when a message’s inclusion triggers a recycle, the message

(still in the system’s buffer) is then recorded into the now empty BF as its first arriving message

since being cleared.

3.1 Distributions
False negative rates in RBFs depend heavily on the popularity (likelihood of repeat) of messages

previously inserted into the RBF. This stands in contrast with false positive rates, which can

be computed irrespective of prior message popularity (a repeat message never generates false

positives, so one need not distinguish which message is repeating to determine false positive rates).

Furthermore, false positives can only occur during a message’s first arrival (subsequent arrivals are

true positives). Because hash functions are used that (pseudo-)randomly select the BF bits to set,

the false positive likelihood depends only on the number of bits set in the BF, which depends only

on the number of (and not which) messages arrived previously in the current BF cycle.

Our analysis permits a rather general description of the message arrival process. We are interested

in RBFs in a steady-state system, so we assume that message arrivals have been ongoing for some

time when the analysis begins. We assume the “snapshot” at a particular time 𝑡 of the distribution

of active messages is stationary with respect to message popularity. Previously unseen messages

may arrive and enter into the distribution, but the popularity of existing messages is adjusted such

that the underlying popularity distribution remains the same. More formally:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

21:4 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

• At any point in time, there is a fixed number 𝐷 of messages that have arrived previously (and

may arrive again).

• At that time, these 𝐷 messages can be sorted by their popularity of being the next selected

message. We say that the 𝑖th of𝐷 messages in the distribution at time 𝑡 has relative popularity

𝑞𝑖 where
∑𝐷−1
𝑖=0 𝑞𝑖 = 1 and the messages are ordered such that 𝑞𝑖 ≥ 𝑞𝑖+1. We call this the

repeat distribution, Q = {𝑞𝑖 }.
• When a message arrives, there is a probability 𝑝𝑟 that the message is drawn from the set of 𝐷

previously seen messages, and in this case, the likelihood of sampling the 𝑖th message is 𝑞𝑖 .

• With probability 1 − 𝑝𝑟 , a new message (different from the 𝐷 previously seen messages) is

sampled. The 𝐷th message Q is evicted, and the new message is inserted into Q as the 𝑖th

most popular message in Q with probability 𝜁𝑖 where N = {𝜁𝑖 } is the distribution on the

location of new message insertions:

∑𝐷
𝑖=1 𝜁𝑖 = 1. Any message in Q whose popularity was 𝑞 𝑗

for 𝑗 ≥ 𝑖 has its popularity shifted to 𝑞 𝑗+1; i.e., the existence of a new message with higher

probability reduces its likelihood of selection.

This construction is a very general way of expressing a stationary distribution that permits

new arrivals into the distribution over time. Using this construction, we will frequently need to

distinguish the history of an arriving message during a particular cycle. We use the following

nomenclature for a message:

• New: a message sampled from N is referred to as new, as it has never previously arrived to

the RBF. Only its initial arrival can be new, since it is subsequently embedded in the repeating

distribution Q from where it can be sampled repeatedly.

• Non-repeat: a message sampled from Q that is not currently recorded in the RBF is called a

non-repeat. It is not new in the sense that since it is being drawn from Q, it must have been

previously sampled, but in a previous RBF cycle.

• Repeat: a message sampled from Q that has already been explicitly recorded during the

current RBF cycle.

With this nomenclature established, we formally define false positives and false negatives:

consider a sequence of 𝑁 messages arrivals, possibly containing repeats. Define a random variable

𝑆𝑖 to describe the status of the 𝑖th arrival as either a new message (𝑆𝑖 = 0), a non-repeat (𝑆𝑖 = 1) or a

repeat (𝑆𝑖 = 2). We write 𝐼 [𝑆𝑖 = 𝑗] to be an indicator r.v. that equals 1 only when 𝑆𝑖 = 𝑗 . Also, let 𝑇𝑖
be an indicator r.v. that equals 1 when all 𝑘 hashes of the 𝑖th message are actively set within the BF.

A false positive is a Non-repeat message that is identified as a repeat by the RBF, due to the event

of the 𝑘 corresponding hash bits already being set in the RBF. The false positive rate over the 𝑁

received messages is 𝑓𝑝 = (∑𝑁
𝑖=1 𝐼 [𝑆𝑖 = 0]𝑇𝑖)/𝑁 .

A false negative is a Non-repeat message that is identified as new by the RBF, for at least one of

its 𝑘 corresponding hash bits were cleared upon a recycle event and remained clear until its next

arrival. The false negative rate over 𝑁 messages is 𝑓𝑛 = (∑𝑁
𝑖=1 𝐼 [𝑆𝑖 = 1] (1 −𝑇𝑖))/𝑁 .

3.2 Two-phase Variants
When an arriving message’s hash bits are all set in the frozen filter, the message is considered a

repeat, and we can choose whether to update the bits in the active BF. Intuitively, one might think

it better not to set the bits in the active filter– after all, doing so simply replicates an identification

already being made within the frozen filter, and increases the likelihood of false positives. However,

simulations show that for certain popularity distributions, setting these bits provides a distinct

advantage: we capture popular items that arrive with high frequency in both the active and frozen

filter. Had we not done so, when recycling occurs and the frozen filter is cleared, memories of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:5

these popular items are lost, triggering a high likelihood of false negatives. We refer to this latter

approach as the copy-over variant.
For the Two-phase variant, the definitions of non-repeat and repeat are extended such that 𝑆𝑖 = 1

only when the re-arriving message is not recorded in either the active or frozen BF, whereas 𝑆𝑖 = 2

when the re-arriving message is recorded in either (or both) the active and frozen BF. Furthermore,

the definition of 𝑇𝑖 is extended to equal 1 when all 𝑘 hashes are actively set in either the active or

the frozen BF; the formulas remain the same to describe 𝑓𝑝 and 𝑓𝑛 .

3.3 Analyzing False Negative Rate
We define 𝑓𝑛 (𝑀,𝑘, 𝜎,Q, 𝑝𝑟 ,N) to be the steady-state false negative rate of an𝑀-bit RBF that utilizes

𝑘 hash functions, utilizes sigma threshold 𝜎 , and whose underlying popularity and new arrival

distributions are Q and N respectively, and arriving messages are new with probability 1 − 𝑝𝑟 .
Since much of our analyses work with fixed values of these parameters, we omit their inclusion

when describing the function, often just using 𝑓𝑛 .

Modeling the false negative rate is significantly more challenging than modeling the false positive

rate. One challenge comes from the observation that over a single cycle, as more messages are

recorded into the RBF, the false negative rate will drop (the likelihood of resampling a message that

is currently recorded in the RBF generally increases as the number of messages recorded increases).

Furthermore, by the pseudo-random property of the hash functions, the bits set from an arriving

message can effectively be viewed as random, such that the model does not need to “track” specifics

about the messages that set these bits. In fact, [9] shows that for a 𝜎-bounded RBF, tracking the

number of messages recorded is not needed: one only needs to track the number of bits set in the

RBF. This is an advantage for modeling false positives; in contrast, the likelihood that an arriving

message results in a false negative is dependent on the specific arriving message’s popularity, as

well as how many messages are currently recorded in the RBF. These computations depend on

the underlying distribution Q, making it challenging to get closed-form or even scalable recursive

solutions exactly matching the false negative rate. We further elaborate in §4.1.4 after giving more

context.

4 MARKOV MODEL APPROACHES
As mentioned in the previous section, the likelihood that an arriving message triggers a false

negative is strongly influenced by the number of messages recorded in the RBF, which (unfortunately

for modeling) is strongly affected by the number of messages in the RBF. [9] also utilized a Markov

Model approach, but there, each state represents the number of bits set within a BF. We instead

employ a Markov Model where each state 𝑖 represents the number of distinct messages that have

thus far been received in the cycle. The value of 𝑖 counts all new and non-repeat messages. Our

steady-state assumption that all messages in Q have been sampled at least once (but perhaps only

in previous cycles), whereas messages sampled from N have not, implies that if a false negative

event occurs, a non-repeat must have occurred.

We extend our definition of 𝑓𝑛 to 𝑓𝑛 [𝑖]1: the likelihood of a false negative when a message arrives

to the RBF that has recorded 𝑖 distinct messages. By finding the steady-state probabilities Π𝑖 of
each state 𝑖 , it follows that the overall average false negative rate is 𝑓𝑛 =

∑
𝑖 Π𝑖 𝑓𝑛 [𝑖].

We note that the actual false negative rate in state 𝑖 , 𝑓𝑛 [𝑖], must exclude the unlikely get-lucky
event where a non-repeat message is recorded, but is not reported to be new because its𝑘 hashes “got

lucky” and hashed to bits previously set in the BF: this is a “lucky” event for a non-repeat because its

1
We use square brackets to distinguish between the state of the Markov Model and the input parameters to 𝑓𝑛 , i.e., in

long-form we would write 𝑓𝑛 (𝑀,𝑘, 𝜎, Q, 𝑝𝑟 ,N) [𝑖].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

21:6 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

resulting classification of “repeat” is in fact correct. Such an event is “unlucky” for a truly new (from

N) message, since this is what leads to a false positive. We can represent 𝑓𝑛 [𝑖] = 𝑓𝑛 [𝑖] (1 − 𝛾𝑘 (𝑖)),
where 𝑓𝑛 [𝑖] is the likelihood that the sampled message from Q is a non-repeat, and 𝛾𝑘 (𝑖) is the
likelihood that recording the message adds no bits. These two events can be treated independently

due to the hash functions mapping messages to RBF bits in a pseudo-randommanner: the number of

messages recorded in the RBF, and not their specific identities will affect the get-lucky likelihood.
2

4.1 Transitions

𝑝!(1 − %𝑓" 𝑖)

𝑖
(Repeat)

𝑝! %𝑓" 𝑖 	(1 − 𝛾#(𝑖))
(Non-Repeat, doesn’t “get lucky”)

(1 − 𝑝!) + 𝑝! %𝑓" 𝑖 	𝛾#(𝑖)
New or (Non-repeat & “gets lucky”)

𝜎
exceeded?

Y

N

To state 1

To state 𝑖 + 1

𝜌(𝑖)

1	 − 𝜌(𝑖)

Fig. 1. Markov model showing state transitions of our model. Red transitions are dashed and indicate a false
negative event.

As illustrated in Figure 1, there are three possible transitions out of each state 𝑖 , and we classify

two of these transitions into two types, a red and black:
• A self-loop (black), when an earlier recorded message re-arrives, i.e., a repeat message. This

only occurs when the message is sampled from Q (with probability 𝑝𝑟) and the message was

previously seen this cycle, and hence not a false negative (with probability 1 − 𝑓𝑛 [𝑖]), such
that self-loop transitions have probability 𝑝𝑟 (1 − 𝑓𝑛 [𝑖]). Thus, transitions exiting state 𝑖 have

transition probabilities that sum to 1 − 𝑝𝑟 + 𝑝𝑟 𝑓𝑛 [𝑖].
• If the arriving message is previously unseen (new or non-repeat) in the current cycle, the

Markov Model transitions to the 𝑖 + 1st state, unless this 𝑖 + 1st previously unseen message

triggers a recycle event (i.e., the number of BF bits set exceeds 𝜎).

• When a recycle event is triggered, there are two variants for the Markov Model. The first is

the non-retaining variant where the arriving message is not recorded into the empty BF. The

second is the retaining variant that does record the message. The former is represented by a

transition to state 0, while the latter is represented by a transition to state 1. Our experience

via simulation suggests that retaining generally yields smaller 𝑓𝑛 and so we focus here on

that variant.

• For non-self looping transitions, the transition can be marked as a false negative (red, dashed)

or benign (black): its subsequent destination (state 𝑖 + 1 or state 1) is based solely on the

number of bits set in the BF, and is independent of transition “color”. Note that the non-self-

loop probability 1 − 𝑝𝑟 + 𝑝𝑟 𝑓𝑛 [𝑖] is shared between black and red transitions: the red (false

negative) transition with probability 𝑝𝑟 𝑓𝑛 [𝑖] (1 − 𝛾𝑘 (𝑖)) corresponds to a sampling from Q
(with probability 𝑝𝑟) being a non-repeat (𝑓𝑛 [𝑖]) and not “getting lucky” (1 − 𝛾𝑘 (𝑖)).

Hence, for each state 𝑖 , we need to determine the likelihood that the 𝑖 + 1st arriving message

triggers a recycle event. Our work focuses on using the 𝜎-bound, but we show how our approach

2
As an aside, false positives occur at rate (1 − 𝑝𝑟)𝛾𝑘 (𝑖) .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:7

can be adapted if one prefers an 𝑁 -bounded approach (that counts bit-setting received messages)

in §4.1.2.

4.1.1 Bit-Measuring Metrics. While the Markov Model explicitly tracks the number of recorded

messages, there are two reasons we need to also track the number of bits set in the RBF: The

recycling event occurs when the number of set bits exceeds 𝜎 , and the likelihood of "get lucky"

events is also a function of the number of set bits.

For our analysis here, we utilize the notation and computations derived in [9]. Consider an

RBF with exactly 𝑗1 bits currently set. Let 𝜏𝑘 (𝑗1, 𝑗2) be the probability that an arriving, unrecorded

message’s 𝑘 hashes will result in the RBF having 𝑗2 bits set. Normally, 0 ≤ 𝑗2 − 𝑗1 ≤ 𝑘 , but also

included in this formulation is the case where the hashes cause the number of set bits to exceed 𝜎 ,

such that the RBF recycles. 𝜏𝑘 can be constructed easily as a recursive function of 𝜏𝑘−1, and there

are 4 variants, depending upon the properties of the 𝑘 hash functions– whether a single message’s

hashes can map to identical bins (colliding), or if each one maps to a distinct bin (non-colliding)–

as well as whether the RBF is retaining or non-retaining. We utilize this formula, but its derivation

is clearly specified for all variants in §4 of [9]. We note that for a particular RBF utilizing memory

of size𝑀 and 𝑘 hash functions, the needed set of 𝜏𝑖, 𝑗 can be computed in 𝑂 (𝑀𝑘2) time.

Let𝜓𝑘 (ℓ, 𝑖) be the probability a 𝑘-hash function RBF with 𝑖 included messages has ℓ bits set.𝜓𝑘
can be defined recursively as

𝜓𝑘 (ℓ, 𝑖) =
{ ∑𝑘

𝑗=0𝜓𝑘 (ℓ − 𝑗, 𝑖 − 1)𝜏𝑘 (ℓ − 𝑗, ℓ) ℓ ≤ 𝜎
0 ℓ > 𝜎

(1)

with 𝜓𝑘 (0, 0) = 1. Equation 1 makes the observation that ℓ bits set after 𝑖 message arrivals must

derive from the cases where ℓ − 𝑗 bits were set for the 𝑖 − 1st message, 0 ≤ 𝑗 ≤ 𝑘 .3
We use𝜓𝑘 to define two useful functions that map likelihoods that are more easily calculated

when conditioning on the number of bits set to their value when conditioned on the number of

messages recorded in the RBF:

𝜙𝑘 (ℓ |𝑖) =
𝜓𝑘 (ℓ, 𝑖)∑
𝑗≤𝜎 𝜓𝑘 (𝑗, 𝑖)

(2)

𝜌 (𝑖) =
∑︁

𝜎−𝑘<ℓ≤𝜎
𝜙𝑘 (ℓ |𝑖)

∑︁
𝑗>𝜎

𝜏𝑘 (ℓ, 𝑗) (3)

𝛾𝑘 (𝑖) =
∑︁

0≤ℓ≤𝜎
𝜙𝑘 (ℓ |𝑖)𝜏𝑘 (ℓ, ℓ) (4)

𝜙𝑘 (ℓ |𝑖) is the conditional probability that, given 𝑖 messages are recorded in the RBF, ℓ bits are set

in the RBF; 𝜌 (𝑖) is the probability that a new message triggers a recycle event (set bits exceed the

𝜎-bound); 𝛾𝑘 (𝑖) is the "get lucky" event alluded to above.

4.1.2 Extending to the 𝑁 -bounded case. If false positive rates are sufficiently low, then a recycling

event can be approximated for the 𝑁 -bounded case by simply transitioning downward only from

state 𝑁 to either state 0 (for non-retaining) or state 1 (retaining). As noted in [9], a real user would

not be able to distinguish between a true repeat and and a new “get lucky” message.

However, in the interest of precision, we can define 𝜙𝑚
𝑘
(𝑗 |𝑖) to be the conditional probability

that 𝑗 messages are observed as setting bits out of the 𝑖 distinct messages received. Then 𝜙𝑚
𝑘
(𝑗 |𝑖)

has base case 𝜙𝑚
𝑘
(0|0) = 1 and satisfies recurrence relation 𝜙𝑚

𝑘
(𝑗 |𝑖) = 𝜙𝑚

𝑘
(𝑗 − 1|𝑖 − 1) (1 − 𝛾𝑘 (𝑖 −

1) + 𝜙𝑚
𝑘
(𝑗 |𝑖 − 1)𝛾𝑘 (𝑖 − 1).

3
Note we do not explicitly use𝜓 to cover the case where where crossing the 𝜎 boundary. In such cases, 𝑖 resets to 0 and

𝜓𝑘 (ℓ, 1) is computed using the base case𝜓𝑘 (0, 0) = 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

21:8 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

4.1.3 Computing Steady State rates. Note that the set of transitions consists of self-loops, transitions
from state 𝑖 to 𝑖 + 1, and transitions from many of the states 𝑖 back to state 0 (non-retaining) or

1 (retaining). In theory, there can be an infinite number of states, given that new messages can

arrive, and some messages may fail to set bits (a false positive for new messages, a “get lucky” event

for non-repeat messages). Note that the likelihood of recording 𝑖 messages starts to drop rapidly

as 𝑖 grows: the steady state probability is certainly bounded by 1 − 𝜌 (𝑖 − 1). To ensure an error

less than some 𝜖 , we cut the process at state 𝑖 for which 𝜖 > 1 − 𝜌 (𝑖 − 1). We begin by choosing a

default non-normalized value of 1 for the base state (state 0 for non-retaining, state 1 for retaining),

and for each 𝑖 , we compute its likelihood relative to that of its neighboring state. After performing

this computation for all states, we sum the total weight of the states, and divide by this amount to

normalize, such that

∑
𝑖 Π𝑖 = 1.

4.1.4 Challenges Modelling Exact False Negative Rate. If we have 𝑓𝑛 [𝑖], we see above that we can
compute all transition probabilities, the false negative rate 𝑓𝑛 [𝑖] of each state, and from there solve

the false negative rate directly. Unfortunately, we see no easy way to directly compute 𝑓𝑛 [𝑖] - we
now describe why this is challenging. Define 𝑅𝑖, 𝑗 to be an indicator random variable that equals 1

when message 𝑗 is one of the first 𝑖 messages to be recorded (non-repeat or new) in the RBF, with

𝑃𝑖, 𝑗 = 𝑃 (𝑅𝑖, 𝑗 = 1). In other words, when the Markov Model is in state 𝑖 , a message sampled from

Q will be a false negative only when 𝑃 (𝑅𝑖, 𝑗 = 0). Clearly we have both 𝑃𝑖, 𝑗 increasing with 𝑖 and

decreasing with 𝑗 : more recorded messages increases the likelihood that message 𝑗 is included, and

more popular messages are more likely to be included than less popular ones.

However, computing 𝑃𝑖, 𝑗 = 𝑃 (𝑅𝑖, 𝑗 = 1) is computationally expensive. To see this, consider a

simple 4-message (𝐷 = 4) example of a distribution whose popularity probabilities are distinct.

Working through the possible sample paths of a small example, we have that 𝑃 (𝑅3, 𝑗 = 1) =

𝑞 𝑗 +
∑
ℓ≠𝑗 𝑞ℓ [

𝑞 𝑗

1−𝑞ℓ +
∑
𝑘≠𝑗,ℓ

𝑞𝑘
1−𝑞ℓ

𝑞 𝑗

1−𝑞ℓ−𝑞𝑘]. Note that for a given set of elements recorded, the likelihood

of such a recording differs depending on the ordering of these messages. For instance, messages

arriving in the order (0,1,2) occurs with probability 𝑞0
𝑞1

1−𝑞0
𝑞2

1−𝑞0−𝑞1 whereas arriving in the reverse

order (2,1,0) has probability 𝑞2
𝑞1

1−𝑞2
𝑞0

1−𝑞2−𝑞1 , i.e., the denominator varies. These complexities only

worsens as 𝑖 and 𝑗 grow large, which they will for the RBFs used in practice.

4.2 Upper bounds, lower bound, and approximation

Rather than compute 𝑓𝑛 exactly, we explore various approaches to computing upper and lower

bounds. It turns out that if 𝑓𝑛 [𝑖] is upper (lower) bounded, then the corresponding false negative

rate of the system is also upper (lower bounded). This is not as straightforward to show as it might

seem. While it is true that 𝑓𝑛 =
∑
𝑖 Π𝑖 𝑓𝑛 [𝑖], such that increasing (decreasing) 𝑓𝑛 [𝑖] will increase

(decrease) 𝑓𝑛 [𝑖], it also alters the steady state distribution of Π𝑖 , since the transition probabilities

are functions of 𝑓𝑛 [𝑖]. However, we are fortunate that these shift in a preferable direction– this is

proven formally in §A of the Appendix.

We proceed by describing how, for various lower, upper, and approximation methods built atop

the Markov Model, one can bound/approximate false negative rates for the system.

4.2.1 A (not-so-tight) lower bound. The Markov Model described above can be used to implement

a fairly loose lower bound, 𝑓 𝑙𝑛 , on false negative Rate. Note that for a given 𝑖 , the largest possible

value for 𝑃𝑖, 𝑗 = 𝑃 (𝑅𝑖, 𝑗 = 1) (hence the smallest possible 1 − 𝑃𝑖, 𝑗) is 𝑃𝑙𝑖, 𝑗 =
∑𝑖−1
ℓ=0 𝑞ℓ , which is the case

where the 𝑖 most popular messages are recorded in the RBF. This lower-bounds the false negative

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:9

rate as:

𝑓 𝑙𝑛 [𝑖] =

(∑︁
𝑖≤ 𝑗<𝐷

𝑞 𝑗

) (
1 −

𝑖−1∑︁
ℓ=0

𝑞𝑖

)
(5)

In other words, by assuming for each state 𝑖 that the 𝑖 messages recorded are the ones with

largest popularity, the likelihood of sampling a non-repeat (any but the 𝑖 most popular messages) is

minimized, and hence lower than what an actual sampling of 𝑖 messages from Q might provide.

4.2.2 Sample-with-replacement upper bound. State 𝑖 of the Markov Model represents the state

where 𝑖 distinct messages are recorded into the RBF, i.e., a sample set of messages can be derived

with correct probability via sampling without replacement. Note that if instead, a sampling with

replacement is used to select the set of messages recorded by state 𝑖 , then the number of distinct

recorded messages could also be less than 𝑖 . Hence, we are simply bounding the sampling-without

replacing bound of 𝑃 (𝑅𝑖, 𝑗 = 1) with the sampling-with-replacement bound of 𝑃𝑠𝑖, 𝑗 = (1 − 𝑞 𝑗)𝑖 . This
yields

𝑓 𝑠𝑛 [𝑖] =

(∑︁
0≤ 𝑗<𝐷

𝑞 𝑗 (1 − 𝑞 𝑗)𝑖
)

(6)

In other words, when sampling with replacement, we select messages that are proportionately

sampled correctly, but there may wind up being fewer than 𝑖 distinct messages sampled when in

state 𝑖 . Thus, the likelihood of a false positive not being one of these 𝑗 ≤ 𝑖 sampled messages will

be higher than if 𝑖 messages were in fact recorded.

4.2.3 Uniform distribution as an upper bound. The false negative rate 𝑓𝑛 for an arbitrary distribution
Q of𝐷 messages is upper-bounded by 𝑓̂ 𝑢𝑛 = 𝑓𝑛 (𝑀,𝑘, 𝜎,U, 𝑝𝑟 ,N), whereU𝐷 is a uniform popularity

distribution with 𝐷 messages, each having sampling likelihood of 1/𝐷 . This is proven formally in

§C.

Determining the false negative rate when 𝑖 messages are recorded for a uniform distribution is

straightforward. We iterate over each message 𝑗 ∈ Q: 𝑞 𝑗 = 1/𝐷 for all 𝑗 , and 𝑃𝑢𝑖,𝑗 = 𝑖/𝐷 , i.e., each
message has an equal likelihood of being one of the 𝑖 recorded messages. Thus:

𝑓̂ 𝑢𝑛 [𝑖] =

(∑︁
0≤ 𝑗<𝐷

(1 − 𝑖/𝐷)/𝐷
)
= (1 − 𝑖/𝐷) (7)

4.2.4 Bi-uniform distribution as tighter upper bound. The proximity of false negative rate of the

uniform distribution to that of the underlying distribution worsens as the underlying distribution’s

variance increases. A tighter distribution can be obtained if one is willing to suffer greater but

reasonable computational overhead by constructing a distribution with two uniform components,

i.e., for index 𝑠 and probability 𝑝ℎ ≥ 1/𝐷 , we can construct such a distribution by assigning 𝑞 𝑗 = 𝑝ℎ
for 𝑗 < 𝑠 and 𝑞 𝑗 = 𝑝𝑙 = (1 − 𝑠𝑝ℎ)/(𝐷 − 𝑠) ≤ 1/𝐷 for 𝑗 ≥ 𝑠 . The false negative rate is computed by

summing over all cases of the 𝑗 th message currently being sampled, determining the likelihood that

it was not previously sampled. For state 𝑖 , there are 𝑖 other messages that must be drawn from this

bi-uniform distribution. For the case where 𝑞 𝑗 = 𝑝ℎ , these other 𝑖 messages must have been sampled

from the set of 𝑠 − 1 messages with sampling probability 𝑝ℎ and 𝐷 − 𝑠 messages with sampling

probability 𝑝𝑙 . For the case were 𝑞 𝑗 = 𝑝𝑙 , these other 𝑖 messages must have been sampled from the

set of 𝑠 messages with probability 𝑝ℎ and 𝐷 − 𝑠 − 1 other messages with sampling probability 𝑝𝑙 :

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

21:10 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

𝑓̂ 𝑏𝑛 [𝑖] =

(∑︁
0≤ 𝑗<𝑠

𝑞 𝑗 (1 −
𝑖−1∑︁
ℓ=0

𝑝ℎ

(
𝑠 − 1

ℓ

)
𝑝ℎ
ℓ𝑝𝑖−1−ℓ
𝑙

) +
∑︁

𝑠≤ 𝑗<𝐷
𝑞 𝑗 (1 −

𝑖∑︁
ℓ=0

𝑝𝑙

(
𝑠

ℓ

)
𝑝ℎ
ℓ𝑝𝑖−1−ℓ
𝑙

)
)

(8)

=

(
𝑠

𝑖−1∑︁
ℓ=0

(
𝑠 − 1

ℓ

)
𝑝ℎ
ℓ+2𝑝𝑖−1−ℓ

𝑙
+ (𝐷 − 𝑠)

𝑖∑︁
ℓ=0

(
𝑠

ℓ

)
𝑝ℎ
ℓ𝑝𝑖+1−ℓ
𝑙

)
(9)

Note that, unlike the uniform distribution, each possible pair of 𝑠 and 𝑝ℎ maps to a distinct

bi-uniform distribution, and not all of them necessarily upper bound the false negative rate of that

of Q. Fortunately, Corollary 5 in §D gives sufficient conditions on the bi-uniform distribution to

ensure it provides an upper bound.

Lemma 1. A false negative rate of a bi-uniform distribution B upper bounds Q when there is some
0 ≤ 𝑡 < 𝐷 for which the 𝑗 th elements 𝑞′𝑗 ∈ B and 𝑞 𝑗 ∈ Q satisfy 𝑞′𝑗 ≥ 𝑞 𝑗 for all 𝑗 ≤ 𝑡 and 𝑞′𝑗 < 𝑞 𝑗 for
all 𝑗 > 𝑡 .

Lemma 2. Let B1 and B2 be two bi-uniform distributions that shift from high to low probabilities
at the same index 𝑠 , with the high probability, 𝑝1

ℎ
of B1 larger than that in B2 (𝑝1ℎ > 𝑝2

ℎ
). Then the

false negative rate of B1 is lower than that of B2.

Putting these two Lemmas together, we see that for each value of 𝑠 , there is a specific B with

maximal 𝑝ℎ that satisfies Lemma 1. Thus, we can find a tightest bi-uniform upper bound by iterating

over all 𝑠 for which 𝑞𝑠−1 ≥ 1/𝐷 , setting 𝑝ℎ = 𝑞𝑠−1, computing the false negative rate for each 𝑠 , and

choosing the minimum result as the tightest upper bound.

Note that this is the best we are able to currently do. Lemma 1 is a sufficient condition, but need

not be necessary.
4

4.2.5 A brief note on self-loops. One may note that when taking a self-loop, the Markov Model

returns to the same state where the set of 𝑖 items is "resampled", when in fact the underlying

process would use the same set of 𝑖 items as in the previous round. The likelihood of exiting the

state turns out to not be the same. Fortunately, resampling actually upper-bounds the process of

not resampling, such that we can use a resampling approach to upper bound a re-use approach.

This is proven in the Appendix in Section B. Note this issue does not impact our lower bound, since

we assume a static set of elements (the 𝑖 most popular) when considering the lower bound, such

that resampling in state 𝑖 always remains static.

4.2.6 An approximate “drop pins” average-case analysis. Average case analyses are often good

approximations of an underlying process, and false negatives are no exception. Here we distin-

guish the arrival a distinct message 𝑗 when 𝑖 messages have been recorded in the RBF. These 𝑖

recorded messages were generated by sampling without replacement. Sampling 𝑖 elements without

replacement can be emulated by performing sampling with replacement (we refer to this sampling-

with-replacement process as “dropping pins” to select elements, hence the name), and stopping

after 𝑖 distinct messages have been selected. The number of samples with replacement, 𝑋 , is a

random variable with some mean 𝐸 [𝑋].
𝐸 [𝑋] can be determined by writing 𝑋 =

∑
ℓ 𝑌ℓ where 𝑌ℓ is an indicator that equals 0 when the

ℓth sample is a repeat of a previous sample, and is 1 otherwise. Since the process is sampling with

replacement, 𝐸 [𝑌ℓ] = 𝑃 (𝑌ℓ = 1) = ∑
0≤ 𝑗<𝐷 𝑞 𝑗 (1 − 𝑞 𝑗)ℓ−1 (iterating over 𝑗 for the case where the ℓth

arrival is message 𝑗 ; the message has not been seen only when the previous ℓ − 1 messages in the

4
We hypothesized that a tighter could be achieved when a distribution B1 majorizes B2, but have found counterexamples.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:11

sampling with replacement are a message other than 𝑗 .) Using the rule that sum of expectations

equals the expectation of sums, this can be simplified to:

𝐸 [𝑋] =
∑︁

0≤ 𝑗<𝐷
𝑞 𝑗

1 − 𝑞 𝑗 ℓ

1 − 𝑞 𝑗
(10)

Note that 𝐸 [𝑋] increases with ℓ (the number of new messages increases with the number of

samples.) For our average-case analysis, we define ℓ∗ (𝑖) to be the value of ℓ for which 𝐸 [𝑋] is
closest to 𝑖 . We now have an average “sampling with replacement” count, and can approximate

the false negative rate as:

𝑓̂ 𝑎𝑛 [𝑖] =

(∑︁
0≤ 𝑗<𝐷

(1 − 𝑞 𝑗)ℓ
∗ (𝑖)𝑞 𝑗

)
(11)

4.2.7 Extending Markov Model to cover Two-phase RBF. Extending to cover a two-phase system is

done by effectively considering the state of a frozen filter (i.e., which state 𝑖 did it “freeze” in). We

define 𝐹𝑖 to be the steady state likelihood that the frozen filter remains frozen in state 𝑖:

𝐹𝑖 = Π𝑖

𝜎∑︁
ℓ=𝜎−𝑘+1

[𝜙𝑘 (ℓ |𝑖)
ℓ+𝑘∑︁
𝑗=𝜎+1

𝜏𝑘 (ℓ, 𝑗)] (12)

i.e., we start from between 𝜎 − 𝑘 + 1 and 𝜎 bits set, and the next message sends us over the edge

and "freezes" the filter.

When an arriving message appears to have been previously recorded in the frozen filter, it should

be classified by the BF as a repeat message. However, assuming it hashes to empty bits in the

active filter, should these bits be filled? For the sake of our analysis, we assume yes. However, our

simulation results also reveal that doing so lowers the false negative rate of the underlying two-

phase system. The reasoning is simple: consider a very popular message arriving that is recorded in

the frozen filter but not the active filter. If we decline recording this message in the active filter, the

BF will identify it as a repeat until the active filter fills to capacity, and the frozen filter is cleared.

This popular message will no longer be recorded and will, upon its almost assured imminent arrival,

trigger a false negative. This assumption is important to our analysis because the set of messages

recorded in the active filter is no longer dependent on the set of messages recorded in the frozen

filter.

Since the configuration of the frozen filter has no effect on the message arrival and insertion

process of the active filter, the 2D system that models the two-phase system can be represented as

the product of two independent Markov Models. In particular, when the active filter consists of 𝑖

recorded messages and the frozen filter has frozen upon 𝑗 recorded messages, the false negative

rate can be computed as:

𝑓 2𝑛 [𝑖, 𝑗] = 𝑝𝑟 𝑓𝑛 [𝑖] 𝑓𝑛 [𝑗] (1 − 𝛾𝑘 (𝑖)) (1 − 𝛾𝑘 (𝑗)) (13)

These transitions are shown for state 𝑖 of the active filter (where 𝑗 is fixed for the figure) in Fig.

11.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

21:12 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

The overall false negative rate is therefore:

𝑓 2𝑛 =
∑︁
𝑖, 𝑗

Π𝑖𝐹 𝑗 𝑓
2

𝑛 [𝑖, 𝑗] (14)

= 𝑝𝑟

(∑︁
𝑖

Π𝑖 𝑓𝑛 [𝑖] (1 − 𝛾𝑘 (𝑖))
) (∑︁

𝑗

𝐹 𝑗 𝑓𝑛 [𝑗] (1 − 𝛾𝑘 (𝑗))
)

(15)

.

Side note: the "red" transition out of state 𝑖 of the active filter can be solved generally as:

𝑝𝑟 𝑓𝑛 [𝑖] (1 − 𝛾𝑘 (𝑖))
(∑

𝑗 𝐹 𝑗 𝑓𝑛 [𝑗] (1 − 𝛾𝑘 (𝑗))
)
.

5 RENEWAL MODEL
An alternative approach to obtaining the long term average false negative rate of the RBF is to

model repeated message arrivals to the RBF as a renewal process. As messages arrive at the RBF, its

bits fill and eventually it resets; we consider the resetting of the RBF to be the start of the renewal

process.

5.1 One-Phase RBF, repeats only
Let us focus on a particular cycle. For that cycle, we define several random variables:

• 𝜂 𝑗 is an indicator r.v. equal to 1 when the 𝑗th arriving message has not been recorded (i.e.,

either new or a non-repeat) such that it may set bits.

• Bℓ, 𝑗 is an indicator r.v. equal to 1 when, after 𝑗 message arrivals, ℓ bits are set in the RBF. We

count all messages, including repeated messages.

• A 𝑗 to be an indicator r.v. that is set to 1 when the 𝑗 th arrival occurs within the given renewal

interval (i.e., after 𝑗 arrivals, we still have ≤ 𝜎 bits set in the RBF). It includes all of new,

repeat and non-repeat arrivals.

• C𝑗 is an indicator r.v. that is set to 1 when the 𝑗th arrival occurs within the given renewal

interval, and it induces a false negative.

A single cycle’s false negative rate is computed simply as

∑∞
𝑗=1 C𝑗/A 𝑗 . We can compute the

average false negative rate over 𝑁 cycles by extending our definition such that A𝑛
𝑗 and C𝑛𝑗 are 1

respectively when the 𝑗th arrival respectively occurs and counts within the 𝑛th cycle. Then the

average false negative rate over these 𝑁 cycles can be written as

∑𝑁
𝑛=1

∑∞
𝑗=1 C𝑗/

∑𝑁
𝑛=1

∑∞
𝑗=1 A 𝑗 , i.e.,

the total number of false negative events observed over the total number of messages received

during these 𝑁 cycles. Dividing numerator and denominator by 𝑁 , we see that this is simply the

average number of false negatives per cycle divided by the average number of message arrivals per

cycle, and letting 𝑁 → ∞, we have:

𝑓𝑛 =
𝐸 [∑∞

𝑗=1 C𝑗]
𝐸 [∑∞

𝑗=1 A 𝑗]
(16)

=

∑∞
𝑗=1 𝐸 [C𝑗]∑∞
𝑗=1 𝐸 [A 𝑗]

(17)

We solve for 𝐸 [A 𝑗] and 𝐸 [C𝑗] as follows:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:13

𝑃 (𝜂 𝑗 = 1) =

𝐷∑︁
𝑖=1

(1 − 𝑞𝑖) 𝑗−1𝑞𝑖 (18)

𝑃 (Bℓ, 𝑗 = 1) =


(1 − 𝑃 (𝜂 𝑗 = 1))𝑃 (Bℓ, 𝑗−1 = 1)+
𝑃 (𝜂 𝑗 = 1)∑𝑘

𝑖=0 𝑃 (Bℓ−𝑖, 𝑗−1 = 1)𝜏𝑘 (ℓ − 𝑖, ℓ) ℓ ≤ 𝜎
0 𝑙 > 𝜎

(19)

Equation (19) bears resemblance to (1), the difference being that the former considers all arriving

messages while the latter considers only bit-setting messages. The (1− 𝑃 (𝜂 𝑗 = 1))Bℓ, 𝑗−1 covers the
case where the message is already recorded and hence sets no bits, and the other part matches (1).

𝑃 (A 𝑗 = 1) =

𝜎∑︁
ℓ=0

𝑃 (Bℓ, 𝑗−1 = 1) (20)

𝑃 (C𝑗 = 1) =

𝜎+𝑘∑︁
ℓ=0

𝑃 (Bℓ, 𝑗−1 = 1)𝑃 (𝜂 𝑗 = 1) (1 − 𝜏𝑘 (ℓ, ℓ)) (21)

= 𝑃 (𝜂 𝑗 = 1)
𝜎+𝑘∑︁
ℓ=0

𝑃 (Bℓ, 𝑗−1 = 1) (1 − 𝜏𝑘 (ℓ, ℓ)) (22)

A 𝑗 is 1 when the number of bits set in the RBF is no larger than 𝜎 after the 𝑗 − 1st message

arrival. C𝑗 is 1 when the number of bits is no larger than 𝜎 after the 𝑗 − 1st arrival, the arriving

message 𝑖 did not arrive in any previous cycle, and did not "get lucky". Noting that because A 𝑗 and

C𝑗 are indicator r.v.s, we have that 𝐸 [A 𝑗] = 𝑃 (A 𝑗 = 1) and 𝐸 [C𝑗] = 𝑃 (C𝑗 = 1).
Note a subtle detail: in (21), ℓ iterates between 0 and 𝜎 + 𝑘 . This is a subtle detail that is to A 𝑗

and Bℓ,𝑗−1 not being independent. As shown in Theorem 7, this is a sufficient upper bound to cover

this correlation.

For the purposes of the upper bound, we note that any finite approximation of this sum satisfies:∑𝑚
𝑗=1 𝐸 [C𝑗]∑𝑚
𝑗=1 𝐸 [A 𝑗]

≥
∑∞
𝑗=1 𝐸 [C𝑗]∑∞
𝑗=1 𝐸 [A 𝑗]

(23)

and hence provides an upper bound that can be computed over a finite number of terms. The

intuition behind why this is an upper bound is that we are effectively only considering the first𝑚

message arrivals in each cycle, and since the RBF records more messages during the duration of

the cycle, each successive message arrival is less likely to induce a false negative than those that

came before. A more formal proof is presented in §E.1.

Further note that as𝑚 increases, the upper bound tightens. To determine an appropriate point

to terminate the computation (i.e., the value of𝑚 used), we choose a small 𝜖 , and we iterate over 𝑗

until

∑
ℓ>𝜎 B(ℓ, 𝑗) > 1 − 𝜖 , i.e., until the likelihood that the recycling event has yet to happen is

less than 𝜖 .

5.2 Extension for New Arrivals
We modify equations (18)-(21) to account for new arrivals as well. First, we note that for the 𝑗th

arrival, the arriving message must be a non-repeat. Non-new messages arrive with probability 𝑝𝑟 ,

but whether the message 𝑖 is a non-repeat does not simply depend on whether message 𝑖 arrived

earlier in the sequence. Previous new arrivals may have altered the position of what is currently

message 𝑖; it may have previously been message 𝑖′ and 𝑖 − 𝑖′ new arrivals falling in front of the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

21:14 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

message in the distribution could have downshifted it. Additionally, message 𝑖 itself may be a new

arrival. We define ℎ𝑖 (𝑗) to be an indicator describing the likelihood that message 𝑖 is “disabled” after

the 𝑗th arrival, meaning that it does not count as a repeat arrival, either because it has previously

been sampled in the current cycle, or because it is a new message. ℎ𝑖 (𝑗) satisfies the recurrence:

ℎ𝑖 (𝑗) = 𝑝𝑟 [ℎ𝑖 (𝑗 − 1) + (1 − ℎ𝑖 (𝑗 − 1))𝑞𝑖] +

(1 − 𝑝𝑟)
[
𝑑𝑖 + ℎ𝑖−1 (𝑗 − 1)

∑︁
𝑖′<𝑖

𝑑𝑖′ + ℎ𝑖 (𝑗 − 1)
∑︁
𝑖′>𝑖

𝑑𝑖′

]
(24)

The first part of this term is the case of a repeat arrival. The 𝑖th message is disabled if it was

previously disabled, or if it was not previously disabled but arrives in the 𝑗th iteration. The second

part of the term is the case of a new arrival. The 𝑖th message is disabled one of three cases hold:

• Case 1: the new message arrives in the 𝑖th position (with probability 𝑑𝑖)

• Case 2: the new message arrives in some position 𝑖′ < 𝑖 such that all messages indexed 𝑖′′ ≥ 𝑖′
have their index incremented. Hence, if the message in position 𝑖 − 1 were disabled, then 𝑖 is

now disabled.

• Case 3: the new message arrives in some position 𝑖′ > 𝑖 , such that message 𝑖’s position in the

distribution is unaffected. Then if message 𝑖 was already disabled, it remains disabled.

Using this recursion, we can formulate equations for Bℓ, 𝑗 . A 𝑗 is adjusted simply by using this

reformulation of Bℓ, 𝑗 . C𝑗 utilizes the reformulated Bℓ, 𝑗 as well, but also needs other adjustments:

𝑃 (𝜂 𝑗 = 1) = (1 − 𝑝𝑟) + 𝑝𝑟
𝐷∑︁
𝑖=1

ℎ𝑖 (𝑗) (25)

𝑃 (C𝑗 = 1) = 𝑝𝑟

[
𝜎+𝑘∑︁
ℓ=0

𝑃 (Bℓ, 𝑗−1 = 1) (1 − 𝜏𝑘 (ℓ, ℓ))
] [

𝐷∑︁
𝑖=1

(1 − ℎ 𝑗−1 (𝑖))𝑞𝑖

]
(26)

B𝑖, 𝑗 is modified indirectly via the redefinition of 𝜂 𝑗 which now accounts for new arrivals in

addition to non-repeats as events that may set bits. C𝑗 can only evaluate to 1 for a non-new arrival

(new arrivals cannot be false negatives). Furthermore, when element 𝑖 is sampled, rather than

simply assuring element 𝑖 was not previously sampled, we ensure that element 𝑖 was not disabled.

5.2.1 Two-Phase RBF. We can apply a similar Renewal Model to a two-phase RBF, but with the

renewal cycle lasting for both the active and frozen filter to reach capacity. For arrival 𝑗 to the

active filter in a given renewal interval, say the frozen filter stopped after𝑚 arrivals. Then the

false negative probability of the next arrival must take into account the previous 𝑗 + 𝑗 ′ messages.

Let 𝜁 𝑗 ′ =
∑𝜎+𝑘
ℓ=0

[
𝑃 (Bℓ, 𝑗 ′−1 = 1) − 𝑃 (Bℓ, 𝑗 ′ = 1)

]
(1− 𝜏𝑘 (ℓ, ℓ)) be the probability the active filter stops

(freezes) after 𝑗 ′ arrivals. The exact expression for the two-phase RBF false negative rate is given

by:

𝑓 2𝑛 = 𝑝𝑟

∑∞
𝑗=1

[∑𝜎+𝑘
ℓ=0 𝑃 (Bℓ, 𝑗−1 = 1) (1 − 𝜏𝑘 (ℓ, ℓ))

(∑∞
𝑗 ′=1 𝜁 𝑗 ′𝑃 (𝜂 𝑗+𝑗 ′ = 1)

)]∑∞
𝑗=1 𝑃 (A 𝑗 = 1) (27)

This involves an infinite some over both 𝑗 and 𝑗 ′, but the same property of the sum approaching

the exact value from above as 𝑗 + 𝑗 ′ increases holds, and once more the bound quickly converges in

tightness in practice. With a bound𝑚 over the set of 𝑗 + 𝑗 ′, this can be efficiently computed by

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:15

iterating over a variable 𝑠 = 𝑗 + 𝑗 ′, the numerator of (27):

𝑝𝑟

𝑚∑︁
𝑠=0

𝑠∑︁
𝑗=0

𝜎+𝑘∑︁
ℓ=0

𝑃 (Bℓ, 𝑗−1 = 1) (1 − 𝜏𝑘 (ℓ, ℓ))𝜁𝑠− 𝑗𝑃 (𝜂𝑠 = 1). (28)

Computationally, we iterate over 𝑗 and compute

∑𝜎+𝑘
ℓ=0 𝑃 (Bℓ, 𝑗−1 = 1) (1 − 𝜏𝑘 (ℓ, ℓ)), 𝜁 𝑗 , and 𝜂 𝑗 ,

storing them in a table until we decide which𝑚 is sufficiently large (using the same stopping criteria

as in the one-phase version). Then we iterate over 𝑠 and and 𝑗 and combine the corresponding

entries stored in the table.

6 ANALYTICAL MODEL VALIDATION AND RESULTS

(a) 𝑝𝑟 = 1 (b) 𝑝𝑟 = 0.5

Fig. 2. Bounds, Approximations and Simulations

6.1 Model Accuracy, Comparisons and Trends
We verify the accuracy of our bounds and approximation through discrete event-driven Python

simulations. We simulated sequences of randommessage arrivals to a RBF, computing False Positive

and False Negative rates. All randomness was handled by the standard python random library
5
. In

Fig. 2, we show results of a simulation for a One-Phase RBF, with𝑀 = 1000 bits; the distribution

Q is a Zipf of 1000 elements and parameter 𝛼 = 2. As additional evidence for the accuracy of

our results, we carry out multiple simulation runs and compute 99% confidence intervals on the

collection of results, indicated by the shaded areas around the plotted sim curves.

In all cases, the results of the Renewal Model are closer to simulation than the Markov Model;

this is not surprising as the Renewal Model can be tuned to be arbitrarily close to the exact false

negative rate, and furthermore takes explicit account of the distribution N .

Figure 2(a) shows the case of low new arrival rates (𝑝𝑟 = 1) and (b) the case of high new arrival

rates (𝑝𝑟 = 0.5). The Lower Bound and Drop Pins Approximation closely track simulation much

like the Renewal Bound for low new arrival rates, but are less accurate for higher ones. The relative

effect of (not) including Q in modelling is illustrated by this result.

6.2 Computation Time Comparison
In Fig. 3 we plot the computation time for our bounds and approximations as well as the time

to simulate 10 runs of 100, 000 message arrivals each on a standard MacBook Pro (2 GHz Intel i5

processor, 16 GB RAM). The Renewal and bi-uniform bounds become dramatically more expensive

than the rest as 𝜎 grows larger; thus less accurate bounds like Sampling With Replacement and

the Drop Pins Approximation still have some utility if we need to estimate bounds for large-sized

5
All the code to generate the Figures and Tables in §6 and §7 will be shared on a GitHub repository https://github.com/

kadzier/Recycling-Bloom-Filters/tree/kahlil-summer2022

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

https://github.com/kadzier/Recycling-Bloom-Filters/tree/kahlil-summer2022
https://github.com/kadzier/Recycling-Bloom-Filters/tree/kahlil-summer2022

21:16 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

Fig. 3. Computation Time Comparison for a RBF with𝑀 = 10000, 𝑘 = 5, 𝑝𝑟 = 0.9.
𝜎 Renewal Time (seconds) Approx. Time (seconds) Approx. % error

1000 0.823 0.213 0.4%

2000 5.541 0.874 0.1%

3000 47.148 2.07 0.4%

Table 1. Accuracy of Approximation and Relative Computation Time

filters. This point is further illustrated in Table 1; in the most extreme case, computing the Drop

Pins approximation is over is over 20x faster than computing the Renewal Bound, with a sacrifice

in accuracy of less than 1%.

6.3 Trade-off Between Filter Parameters, False Positives and False Negatives

Fig. 4. Best achievable False Negative rate vs. total filter size M
In Fig. 4, we show how varying the maximum filter size 𝑀 impacts the best achievable false

negative rate for a fixed false positive rate of .0001 (which constrains 𝜎). Q is a Zipf distribution

with 𝑁 = 1000 elements and 𝛼 = 1, with a repeat message arrival rate of 𝑝𝑟 = 0.9. For𝑀 < 25000,

we also plot corresponding simulations. Increasing the filter size is seen to have a dramatic effect

on False Negative rates for smaller filters, and effect that gradually diminishes as the filter grows

larger.

Fig. 5 has a fixed filter size𝑀 = 500, and we vary 𝜎 instead.We plot two different arrival processes,

both Zipf distributions, with alpha parameters of 0, 1 and 2 with 𝑝𝑟 = 0.9. One can observe two

trends. First, the message arrival distribution does not impact the false positive rate at all. The false

negative rate, however, is significantly impacted by the arrival distribution, with more "uniform"

arrivals leading to higher false negative rates. Second, the average False Positive rate exponentially

increases with RBF capacity, while the corresponding false negative rate linearly decreases. When

designing RBFs to balance false positive and false negative rates one can keep this trend in mind;

for RBFs operating near their 𝜎 capacity, dramatic improvements to average false positive rates can

be achieved by slightly reducing the capacity, without unduly impacting the false negative rate.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:17

(a) One-Phase RBF (b) Two-Phase RBF

Fig. 5. False Positive and False Negative trends, varying RBF capacity 𝜎 .

Summarizing, if a RBF user wants to minimize both their false positive and false negative rates,

to some extent, the largest lever (the arrival distribution) is out of the user’s individual control. But

given a distribution, one can then vary 𝜎 to find an acceptable trade-off between False Positive and

False Negative rates.

6.4 One Phase vs. Two Phase Filter

Fig. 6. False Negative rate, One-Phase RBF vs. Two-Phase RBF for a new arrivals probability of 0.5. Two-Phase
clearly performs better.

In Fig. 6, we investigate the performance of the One-Phase vs. the Two-Phase RBF. Total filter

memory𝑀 = 1000 and false positive rates were fixed at .01 and .0001. For high arrival rates, the

one-phase filter beats out the two-phase; this switches for low arrival rates. The exact "crossover

point" depends on parameters such as false positive rate tolerance and𝑀 .

7 TWO USE-CASES ON REALWORKLOADS
In this section, we examine the tightness of our upper bound through the study of two distinct

real-world workloads. The first workload focuses on traffic from an end-user perspective of interest

in scenarios where an ISP seeks insight into the Internet access patterns of its users at a fraction of

the cost necessary to run Netflow[6]. The second workload views traffic from a CDN perspective,

with the objective of serving users as efficiently as possible. In particular, CDNs have in the past

used Bloom Filters to inform their content caching strategies, ultimately enhancing content delivery

efficiency and reducing latency. This technique involves caching content only if it hits both phases

of a recycling Bloom Filter to avoid caching unlikely one-hit wonders ([17] provides an in-depth

discussion of this setup).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

21:18 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

The key characteristics of the user-centered dataset include significant temporal correlations,

where specific requests predictably lead to a series of subsequent requests. This pattern is indicative

of (i) specific user behaviors and (ii) widespread interactions between internet services, which can

be highly sequential. The second dataset also demonstrates temporal correlations, highlighting

patterns in how content is requested and cached over time. These temporal dynamics break our

initial assumption but make the upper-bound more conservative as we discuss in Section 7.3.

(a) One-Phase (b) Two-Phase

Fig. 7. Renewal Bound, Simulation, and Recorded Trace Data, (a) One-Phase RBF, (b) Two-Phase RBF.

7.1 User-centered Application
Dataset description: To evaluate the tightness of our upper-bound in practical scenarios, we

compiled data on all IP flows to and from 13 residential buildings on Columbia’s network for two

days in May 2023
6
. This resulted in a total of 35857439 flows, with 227668 unique flows to a specific

/24 identified. The dataset has been fully anonymized to guarantee the privacy of the users. We

designed a RBF to efficiently identify duplicate flows and avoid storing redundant ones.

The effect of correlation: A challenge in analyzing this dataset lies in the presence of temporal

dependencies among the samples. Typically, user interactions with web applications initiate a

sequence of related network flows. These flow patterns can change as CDNs adjust traffic (e.g.,

via DNS [21]) to manage datacenter load. Such sequences have been previously been used to

fingerprint applications and deduce user behaviors [23]. While these dependencies complicate the

mathematical analysis, they actually benefit caching by decreasing both false negatives and false

positives. Thus, our upper-bound remains valid, albeit potentially less tight than in our simulations;

we talk about this phenomenon in greater detail in §7.3.

Results: From the flow statistics, we can construct the equivalent of Q and N in the Renewal

Model. Because we have the entire flow record, we can compute the real false positive and negative

rates of our RBF once the parameters 𝑀 , 𝜎 and 𝑘 have been specified. In an effort to show the

performance for uncorrelated samples, we also study the result of simulations where messages are

sampled according to Q. In particular, we are interested in answering two main questions: (1) Given

a specific memory size and false positive rate, what is the best negative rate that we can provably

accomplish, and (2) Given a requirement of false positive and negative, what are the parameters of

the resulting RBF 𝑘 , 𝜎 , and𝑀?

In Figure 7, we answer (1) by showing the best achievable false negative rate under our Renewal

upper-bound, alongside results from our simulated uncorrelated scenario, and actual recorded data

using an RBF with varying memory capacities and a fixed 0.0001 false positive rate. As we had

hypothesized, the upper bound is less tight for the recorded trace data but still holds.

6
This dataset has been used in a recent publication but cannot be shared in its current form because of its sensitive nature

[14]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:19

The answer to (2) is somewhat more open-ended; our analysis finds that, depending on the

message arrival distribution, there may be a range of 𝑘 , 𝜎 and 𝑀 values that can meet the False

Positive and False Negative constraints. Generally, we find that increasing𝑀 independently of the

other parameters increases the range of False Negative rates that can be achieved, while keeping

the range of achievable False Positive rates consistent.

(a) Mixed, Two-Phase (b) Web, Two-Phase

Fig. 8. Renewal Bound, Simulation, and JEDI for web traffic and mixed-traffic.

7.2 CDN-centered Application
Dataset description: As obtaining real traces from CDN is challenging for privacy and security

reasons, we rely on a state-of-the-art synthetic trace generation tool named Jedi [25]. Using Jedi, we

generate traces representative of diverse object types directly based on data observed in Akamai’s

CDN traffic. We concentrate on two types of traces: a mixed trace containing a variety of traffic from

multimedia sources, and a trace exclusively focused on web content
7
. For both types, we simulate

1 million requests at a rate of 10 requests per second, using the first 5M requests to populate the

cache and the remaining 5M to conduct our analysis. A significant observation in both traces was

the prevalence of "one-hit wonders," with over 60% of entries appearing only once. False positives

and false negatives both harm the user experience, with false negatives potentially having a more

detrimental effect by failing to cache popular content that meets the caching threshold.

Results: In Figure 8, we show that our upper-bound is tight for web traffic and less so for

mixed-traffic. To measure this relationship, we examine the frequency at which requests cluster

together (as opposed to occurring independently). We create a Markov Chain model based on

request sequences, and calculate the average entropy of its transition probabilities. Although this

approach does not directly measure the sequence’s "predictability", it allows us to study the number

of instances where an element is followed by many elements with equiprobability. In particular, a

completely sequential trace, where every element is followed by the same element, would have a

full sequentiality and average entropy equal to 0. Mixed traffic shows lower entropy (≈ 0.51) than

web traces (≈ 0.59) due to the sequential nature of requests for certain applications, but more than

the user-focused dataset (≈ 0.39).

7.3 Discussion
Correlations in time-series: The real workload examples highlight a promising method to refine

our bounds: dynamically identifying correlations. Our current approach is based on the premise

that the arrivals have stabilized into a stationary distribution. However, in practical scenarios, no

two cycles are the same; our data continuously evolves, with elements both fading and emerging

7
We use the ’EU’ traffic class to generate a synthetic trace that is representative of the original trace obtained from an

Akamai server that is serving a mix of traffic classes and the ’W’ traffic class for the web content traffic

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

21:20 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

with different existing correlations. We have assumed homogeneity within each cycle for analytical

simplicity. Yet this condition is not essential; we believe a more precise upper bound could be

achieved by relaxing this assumption. This improvementmight requiremore sophisticated analytical

tools, which we plan to explore in future work.

8 RELATEDWORK
Recycling Bloom Filters: Our work focuses on RBFs. These have appeared as a cost-effective and

simpler solution than Bloom Filter variants with deleting capabilities such as the Counting BF [11],

Quotient BF [2], Cuckoo Filter [10], the Ternary Bloom Filter [15] and the Deletable Bloom Filter

[24]. A related variant type uses the concept of a "sliding" window of fixed width [22], [1], [16],

and can guarantee an absence of false positives and false negatives within the window as well as a

maximum false positive rate for never-before seen messages. However, these variants impose no

constraints on previously seen messages outside of the window, and the false negative rates are

not analyzed. RBFs have demonstrated their utility in various applications, including managing

authorized traffic in Software-Defined Networks (SDN) [19], detecting DDoS attacks [7], ensuring

consistent load balancing in data centers [20], attributing payload [26], and facilitating routing in

Information-Centric Networks (ICN) [18]. Akamai made a specific mention of a two-phase RBF in

[17] which was a particular motivation for this work.

False Negative Rates: There has been a considerable amount of literature studying false-positive

for Bloom Filters [3–5, 13]. However, false negatives have been significantly less studied as they

only occur in certain variants of Bloom Filters. Guo et al. demonstrated that Counting Bloom Filters

could suffer from false negatives and provided analytical bounds on the number of false negatives

in that instance [12]. In a different context, Donnet et al. introduces a Bloom Filter variant that

selectively deletes entries that create a high false positive rate at the expense of false negatives

[8]. Similarly, Kleyko et al. introduces the "autoscaling" Bloom Filter that automatically adjusts its

capacity with probabilistic bounds on false positives, true positives and false negatives. Our study

is unique in that it is, to the best of our knowledge, the first to investigate the false negative rates

associated with recycling in Bloom Filters. A recent paper has shown that these recycling Bloom

Filters result in slightly different false positive bounds than in the literature as well [9].

9 CONCLUSION
To date, a formal analysis of False Negative rates in Recycling Bloom Filters has not been realized;

we provide this analysis by deriving approximations, upper bounds and lower bounds of False

Negative rates for several variants of RBFs.

We validate our analysis through both simulation and comparison to real-world trace data, and

find that Renewal Models work quite well as a general-purpose upper bound for False Negative

rates in a wide variety of message arrival distribution scenarios. However, in the case of low rates

of new message arrivals, we find Markov Models can be a computationally tractable alternative.

Our analysis enables users of RBFs to more effectively select filter design parameters and balance

false positive and false negative considerations to achieve optimal performance in applications.

10 ACKNOWLEDGMENTS
This material is based upon work supported by the National Science Foundation under Grant

Nos. CNS-1910138, CNS-2106197, and CNS-2148275. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation. We also wish to thank Shuyue Yue, Ethan

Katz-Bassett, and Gil Zussman, who are funded in part by NSF grant OAC-2029295, for providing

the user-centered dataset referenced in Section 7.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:21

REFERENCES
[1] Eran Assaf, Ran Ben Basat, Gil Einziger, and Roy Friedman. 2018. Pay for a sliding bloom filter and get counting,

distinct elements, and entropy for free. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE,
IEEE, Honolulu, HI, 2204–2212.

[2] Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C. Kuszmaul, Dzejla Medjedovic, Pablo

Montes, Pradeep Shetty, Richard P. Spillane, and Erez Zadok. 2012. Don’t Thrash: How to Cache Your Hash on Flash.

Proc. VLDB Endow. 5, 11 (jul 2012), 1627–1637. https://doi.org/10.14778/2350229.2350275

[3] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13, 7 (1970),

422–426.

[4] Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin, Jason Morrison, Michiel Smid, and Yihui

Tang. 2008. On the false-positive rate of Bloom filters. Inform. Process. Lett. 108, 4 (2008), 210–213.
[5] Ken Christensen, Allen Roginsky, and Miguel Jimeno. 2010. A new analysis of the false positive rate of a bloom filter.

Inform. Process. Lett. 110, 21 (2010), 944–949.
[6] Benoit Claise. 2004. Cisco Systems NetFlow Services Export Version 9. RFC 3954. Internet Engineering Task Force.

https://www.ietf.org/rfc/rfc3954.txt Accessed: [Insert access date here].

[7] Biplob Debnath, Sudipta Sengupta, Jin Li, David J Lilja, and David HC Du. 2011. BloomFlash: Bloom filter on flash-based

storage. In 2011 31st International Conference on Distributed Computing Systems. IEEE, IEEE, Minneapolis, MN, USA,

635–644.

[8] Benoit Donnet, Bruno Baynat, and Timur Friedman. 2006. Retouched bloom filters: allowing networked applications

to trade off selected false positives against false negatives. In Proceedings of the 2006 ACM CoNEXT conference. ACM,

Lisboa Portugal, 1–12.

[9] Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein. 2024. Modeling Average False Positive Rates of Recycling

Bloom Filters. In IEEE Infocom. IEEE, Vancouver, CA.

[10] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher. 2014. Cuckoo filter: Practically better

than bloom. In Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and
Technologies. ACM, Sydney Australia, 75–88.

[11] Li Fan, Pei Cao, J. Almeida, and A.Z. Broder. 2000. Summary cache: a scalable wide-area Web cache sharing protocol.

IEEE/ACM Transactions on Networking 8, 3 (2000), 281–293. https://doi.org/10.1109/90.851975

[12] Deke Guo, Yunhao Liu, Xiangyang Li, and Panlong Yang. 2010. False Negative Problem of Counting Bloom Filter.

Knowledge and Data Engineering, IEEE Transactions on 22 (06 2010), 651 – 664. https://doi.org/10.1109/TKDE.2009.209

[13] Florian Klingler, Reuven Cohen, Christoph Sommer, and Falko Dressler. 2018. Bloom hopping: Bloom filter based

2-hop neighbor management in VANETs. IEEE Transactions on Mobile Computing 18, 3 (2018), 534–545.

[14] Thomas Koch, Shuyue Yu, Sharad Agarwal, Ethan Katz-Bassett, and Ryan Beckett. 2023. PAINTER: Ingress Traffic

Engineering and Routing for Enterprise Cloud Networks. In Proceedings of the ACM SIGCOMM 2023 Conference
(<conf-loc>, <city>New York</city>, <state>NY</state>, <country>USA</country>, </conf-loc>) (ACM SIGCOMM
’23). Association for Computing Machinery, New York, NY, USA, 360–377. https://doi.org/10.1145/3603269.3604868

[15] Hyesook Lim, Jungwon Lee, Hayoung Byun, and Changhoon Yim. 2016. Ternary bloom filter replacing counting

bloom filter. IEEE Communications Letters 21, 2 (2016), 278–281.
[16] Yang Liu,Wenji Chen, and YongGuan. 2013. Near-optimal approximatemembership query over time-decayingwindows.

In 2013 Proceedings IEEE INFOCOM. IEEE, Turin, Italy, 1447–1455. https://doi.org/10.1109/INFCOM.2013.6566939

[17] Bruce M Maggs and Ramesh K Sitaraman. 2015. Algorithmic nuggets in content delivery. ACM SIGCOMM Computer
Communication Review 45, 3 (2015), 52–66.

[18] Ali Marandi, Torsten Braun, Kavé Salamatian, and Nikolaos Thomos. 2017. BFR: A bloom filter-based routing approach

for information-centric networks. In 2017 IFIP Networking Conference (IFIP Networking) and Workshops. IFIP, Stockholm,

Sweeden, 1–9. https://doi.org/10.23919/IFIPNetworking.2017.8264842

[19] Luke McHale, Jasson Casey, Paul V Gratz, and Alex Sprintson. 2014. Stochastic pre-classification for SDN data plane

matching. In 2014 IEEE 22nd International Conference on Network Protocols. IEEE, IEEE, Raleigh, NC, USA, 596–602.
[20] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017. SilkRoad: Making Stateful Layer-4

Load Balancing Fast and Cheap Using Switching ASICs. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (Los Angeles, CA, USA) (SIGCOMM ’17). Association for Computing Machinery, New

York, NY, USA, 15–28. https://doi.org/10.1145/3098822.3098824

[21] Giovane C. M. Moura, John Heidemann, Ricardo de O. Schmidt, and Wes Hardaker. 2019. Cache Me If You Can: Effects

of DNS Time-to-Live. In Proceedings of the Internet Measurement Conference (Amsterdam, Netherlands) (IMC ’19).
Association for Computing Machinery, New York, NY, USA, 101–115. https://doi.org/10.1145/3355369.3355568

[22] Moni Naor and Eylon Yogev. 2013. Sliding bloom filters. In International Symposium on Algorithms and Computation.
Springer, Springer, Hong Kong, China, 513–523.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

https://doi.org/10.14778/2350229.2350275
https://www.ietf.org/rfc/rfc3954.txt
https://doi.org/10.1109/90.851975
https://doi.org/10.1109/TKDE.2009.209
https://doi.org/10.1145/3603269.3604868
https://doi.org/10.1109/INFCOM.2013.6566939
https://doi.org/10.23919/IFIPNetworking.2017.8264842
https://doi.org/10.1145/3098822.3098824
https://doi.org/10.1145/3355369.3355568

21:22 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

[23] Fatemeh Rezaei and Amir Houmansadr. 2021. FINN: fingerprinting network flows using neural networks. In Annual
Computer Security Applications Conference. ACM, New York, NY USA, 1011–1024.

[24] Christian Esteve Rothenberg, Carlos AB Macapuna, Fábio L Verdi, and Mauricio F Magalhaes. 2010. The deletable

Bloom filter: a new member of the Bloom family. IEEE Communications Letters 14, 6 (2010), 557–559.
[25] Anirudh Sabnis and Ramesh K. Sitaraman. 2022. JEDI: model-driven trace generation for cache simulations. In

Proceedings of the 22nd ACM Internet Measurement Conference (Nice, France) (IMC ’22). Association for Computing

Machinery, New York, NY, USA, 679–693. https://doi.org/10.1145/3517745.3561466

[26] Kulesh Shanmugasundaram, Hervé Brönnimann, and Nasir Memon. 2004. Payload attribution via hierarchical bloom

filters. In Proceedings of the 11th ACM conference on Computer and communications security. ACM, New York, NY, USA,

31–41.

[27] David Starobinski, Ari Trachtenberg, and Sachin Agarwal. 2003. Efficient PDA synchronization. IEEE Transactions on
Mobile Computing 2, 1 (2003), 40–51.

A UPPER LOWER BOUND RESULT
We formulate a Markov Model that we refer to as a red-black Markov Model because it contains
both black and red transitions, and we will be interested in measuring the respective rates at which

red transitions are taken in two particular variants. The description of an 𝑁 -state red-back Markov

Model BM is as follows:

• Each state 𝑖’s outgoing transitions are colored red or black, and their probability weights

are described by the following variables: 𝑥𝑖 (BM), 𝑦𝑖 (BM), and for each other state 𝑗 ≠ 𝑖

in BM, 𝑝𝑖, 𝑗 (BM) such that

∑
𝑗≠𝑖 𝑝𝑖, 𝑗 (BM) = 1. We drop the BM when its reference is

unique.

• Each state 𝑖 takes a self-loop transition with probability (1 − 𝑥𝑖)𝑦𝑖 . This transition is black.

• When not taking a self-loop, it exits the state, and conditioned on exiting it goes to state 𝑗 ≠ 𝑖

with probability 𝑝𝑖, 𝑗 . It is important to emphasize that the likelihood that, when transiting

out of state 𝑖 , the choice of next state is only a function of the 𝑝𝑖, 𝑗 , and specifically not of the

values of 𝑥𝑖 and 𝑦𝑖 .

• The transition from 𝑖 to 𝑗 can be a red transition or a black transition. The transition is black

with (not conditioned) probability 𝑝𝑖, 𝑗 (1 − 𝑦𝑖), leaving the probability of 𝑝𝑖, 𝑗𝑥𝑖𝑦𝑖 for the red

transition. Note (1− 𝑥𝑖)𝑦𝑖 +
∑
𝑗≠𝑖 𝑝𝑖, 𝑗 (1−𝑦𝑖) +

∑
𝑗≠𝑖 𝑝𝑖, 𝑗𝑥𝑖𝑦𝑖 = 1, i.e., the sum of all probability

transitions is 1.

Define R(BM) to be the fraction of time red transitions are taken in the steady state system

described by BM. This is clearly R(BM) = ∑
𝑖 Π𝑖

∑
𝑗 𝑝𝑖, 𝑗𝑥𝑖𝑦𝑖 in the steady state.

An alternate but equivalent sample path definition is:

lim

𝑛→∞

∑︁
𝑃∈{𝑃 }

𝑚𝑒𝑎𝑠 (𝑃)𝐶𝑛 (𝑃)/𝑛

where {𝑃} is the set of all possible sample paths of some length𝑚 ≥ 𝑛,𝑚𝑒𝑎𝑠 (𝑃) is the likelihood
that path 𝑃 is taken, and 𝐶𝑛 (𝑃) is the number of red transitions seen during the first 𝑛 transitions

of path 𝑃 .

Theorem 3. Let BM1 and BM2 be a pair of red-black Markov Models that are identical except
that for each state 𝑖 , 𝑥𝑖 (BM1) ≥ 𝑥𝑖 (BM2). Then R(BM1) ≥ R(BM2).

Proof. Consider the following method for generating sample paths for BM2 that relies on i.i.d.

sampling of a random variable that is uniformly distributed within [0, 1]:
(1) Start BM2 in its initial state 0.

(2) When in state 𝑖 , sample a value 𝑠 uniformly in the interval [0, 1]. If the value falls under
𝑝𝑙𝑜𝑜𝑝2 = (1−𝑥𝑖 (BM2))𝑦𝑖 , take the self loop transition back to 𝑖 , and repeat step 2. Otherwise

proceed.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

https://doi.org/10.1145/3517745.3561466

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:23

(3) Sample another 𝑠 again uniformly in [0, 1] and transition to state 𝑗 whenever
∑
ℓ< 𝑗 𝑝𝑖,ℓ < 𝑠 ≤∑

ℓ≤ 𝑗 𝑝𝑖,ℓ , i.e., choosing the next state to transition with probability 𝑝𝑖, 𝑗 .

(4) Sample 𝑠 again uniformly in [0, 1] to choose the color of the aforementioned 𝑖-to- 𝑗 transition ,

with the edge being red when 𝑠 < 𝑝𝑟𝑒𝑑2 =
𝑥𝑖 (BM2)𝑦𝑖

(1−𝑦𝑖)+𝑥𝑖 (BM2))𝑦𝑖 (this the probability conditioned

on a non-self loop having been taken).

(5) return to step 2

The method for generating sample paths for BM1 is similar with a few changes:

• For step 4 substitute 𝑥𝑖 (BM1) in place of 𝑥𝑖 (BM2). Since 𝑝𝑟𝑒𝑑1 = 𝑥𝑖 (BM1) ≥ 𝑥𝑖 (BM2),
this increases the likelihood of a red edge being chosen since it follows that:

𝑝𝑟𝑒𝑑1 =
𝑥𝑖 (BM1)𝑦𝑖

(1 − 𝑦𝑖) + 𝑥𝑖 (BM1)𝑦𝑖
≥ 𝑥𝑖 (BM2)𝑦𝑖

(1 − 𝑦𝑖) + 𝑥𝑖 (BM2)𝑦𝑖
• Step 2 remains the same, using the 𝑥𝑖 (BM2) bound to determine when to transition to the

next step and select the exiting transition. However self-loops are only for samples 𝑠 for which

it and all previous samples 𝑠′ since entering the state satisfy 𝑠, 𝑠′ < (1−𝑥𝑖 (BM1))𝑦𝑖 = 𝑝𝑙𝑜𝑜𝑝1.
In other words, self-loops are added until some 𝑠 ≥ (1−𝑥𝑖 (BM1))𝑦𝑖 , and the sample path for

BM1 stays in a "holding pattern", leaving the sample path unmodified, until an 𝑠 is sampled

where 𝑠 > (1 − 𝑥𝑖 (BM2))𝑦𝑖 , at which point the construction can move to step 3.

Note that since the samples 𝑠 are i.i.d., the "tossing" of samples when building BM1 does not alter

its sample path distribution. Also note that, while we initially pose 𝑠 as a random value uniformly

distributed within [0, 1], since our resulting action only depends upon the interval within which

𝑠 lies, we can discretize the random variable being sampled such that 𝑠 selects from a finite set

of outcomes, where the size of the set equals the number of sub-intervals, and the likelihood of

choosing a particular option is equal to the size of its subinterval in the original formulation.

Finally, we can now use a single sample sequence to simultaneously generate sample paths 𝑃1
and 𝑃2 respectively for both BM1 and BM2 that satisfy their respective probability distributions.

For instance, to make the determiniation of the color of outgoing edges in BM1 and BM2 si-

multaneously (i.e., step 4), we choose both red with probability 𝑝𝑟𝑒𝑑2, BM1’s transition red and

BM2’s transition black with probability 𝑝𝑟𝑒𝑑1 − 𝑝𝑟𝑒𝑑2, and both black with probability 1 − 𝑝𝑟𝑒𝑑1.
The following properties also hold for sample paths 𝑃1 and 𝑃2:

• The sequence of states that 𝑃1 and 𝑃2 progress through, ignoring self-loops, is identical.

• If 𝑃2 marks its 𝑗 non-self-loop transitioning edge as red, then 𝑃1 does as well.

• After taking their respective 𝑘th non-self-loop transitioning edges to enter the some identical

state 𝑖𝑘 , the number of times that 𝑃2 self-loops before exiting the state is never less than that

of 𝑃1. It follows that for all 𝑘 , BM2 will never reach its 𝑘th non-self loop before BM1 does.

• This implies that the number of red transitions crossed within an 𝑛-transition sample path is

never larger in BM2 than in BM1, both because fewer non-self loop transitions will be red

in BM2 and because there are more self-loops between non-self-loop transitions.

Define𝐶𝑛 (𝑃) to be the number of non-self-loop transitions occuring within the first 𝑛 transitions

of sample path 𝑃 . Note that when 𝑃1 and 𝑃2 are generated with the same uniform sampling process,

it is always the case that𝐶𝑛 (𝑃1) > 𝐶𝑛 (𝑃2). We can define 𝜙 𝑗 (𝑆) as the process that generates sample

path 𝑃 𝑗 for BM 𝑗 using sampling sequence 𝑆 , and we have that ∀𝑆,𝐶𝑛 (𝜙1 (𝑆)) ≥ 𝐶𝑛 (𝜙2 (𝑆)). Also,
𝑚𝑒𝑎𝑠 (𝑃 𝑗) =

∑
{𝑆 :𝜙 𝑗 (𝑠)=𝑃 𝑗 }𝑚𝑒𝑎𝑠 (𝑆), i.e., the likelihood of sample path 𝑃 𝑗 is equal to the likelihood

that the sampling process using samples 𝑠 generates 𝑃 𝑗 . unique sample path 𝑃2 for BM2 such

that𝑚𝑒𝑎𝑠 (𝑃2) =𝑚𝑒𝑎𝑠 (𝑆). There are many 𝑆 that generate each 𝑃1 in BM1 (i.e., different-length

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

21:24 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

“freeze” portions), but𝑚𝑒𝑎𝑠 (𝑃1) =
∑
𝜙1 (𝑆)=𝑃1𝑚𝑒𝑎𝑠 (𝑆). Clearly, because ∀𝑆, 𝑛,𝐶𝑛 (𝜙1 (𝑆) ≥ 𝐶𝑛 (𝜙2 (𝑆)),

the result holds. □

Our initial version of the red-black model omits one subtlety of our final implementation of our

Markov Model for false negative: the “get-lucky” event. It was omitted to simplify presentation. We

address it here. Per state, we introduce a bias parameter 𝑧𝑖 that is used to bias away from marking

a transition red. In effect, the probability of marking a non-self-loop transition red changes from

𝑝𝑖, 𝑗𝑥𝑖𝑦𝑖 to 𝑝𝑖, 𝑗𝑥𝑖𝑦𝑖 (1 − 𝑧𝑖), and hence the probability of marking a non-self-loop transition black

from 𝑝𝑖, 𝑗 (1 − 𝑦𝑖) to 𝑝𝑖, 𝑗 ((1 − 𝑦𝑖) + 𝑥𝑖𝑦𝑖𝑧𝑖 . Intuitively, since this bias is identical per state across
Markov Models BM1 and BM2, it should be no surprise that the main Theorem’s results extend

to the case where we have some 0 ≤ 𝑧𝑖 ≤ 1.

Corollary 1. With an additional bias per state 𝑖 of 1 − 𝑧𝑖 against red transitions in both BM1

and BM2, we still have R(BM1) ≥ R(BM2).

Proof. The conditional probability of choosing red on a transition from 𝑖 to 𝑗 , given a non-self-

loop transition is being taken changes from
𝑥𝑖 (BM 𝑗)𝑦𝑖

(1−𝑦𝑖)+𝑥𝑖 (BM 𝑗)𝑦𝑖 to
𝑥𝑖 (BM 𝑗)𝑦𝑖

(1−𝑦𝑖) (1−𝑧𝑖)+𝑥𝑖 (BM 𝑗)𝑦𝑖 . The fact

that the former is larger for BM1 implies that so is the latter. Hence, the application of the proof

of Theorem 3 still applies. □

Corollary 2. Our Markov Model that measures false negative rate can be presented as a red-black
Markov Model

Proof. Set 𝑦𝑖 = 𝑝𝑟 . Note that 𝑝𝑖, 𝑗 is non-zero only for 𝑗 = 𝑖 + 1 and for 𝑗 = 0 (for non-retaining)

and 𝑗 = 1 for retaining in states 𝑖 , and 𝑝𝑖,𝑖+1 = 1−𝜌 (𝑖). Finally, 𝑥𝑖 equals the corresponding first-time

sampling rate 𝑓𝑛 , while 𝑧𝑖 is the get-lucky likelihood 𝛾𝑘 (𝑖).
To use the theorem in the context of an upper bound, apply Corollary 1 with BM2 modeling

the actual false negative rate (using 𝑥𝑖 = 𝑓𝑛), while BM1 implements an upper bound using 𝑥𝑖 set

to one of the appropriate upper bounding formulae. For the lower bound, use BM1 to model the

actual false negative rate, while BM2 models the appropriate lower bounding formula.

□

Lemma 1. An item currently sampled with popularity 𝑞 𝑗 had popularity 𝑞 𝑗 ′ in previous iterations
with 𝑗 ′ ≤ 𝑗 , such that 𝑞 𝑗 can be no higher than in earlier iterations.

Corollary 3. Equations (6), 7, 9 further upper-bound as 𝑝𝑟 decreases.

Proof. Each of these equations is derived for state 𝑖 by iterating over the set of 𝐷 messages in

the popularity distribution, and for each 0 ≤ 𝑗 < 𝐷 , considering the case where that message is

currently sampled and is not one of the previously 𝑖 sampled messages. This formula is making

two assumptions:

• that the 𝑗 message was not replaced by a “new” message sampled earlier in the current cycle

(such that its sampling is for certain not a false negative).

• that in previous iterations, the likelihood of sampling this message was also 𝑞 𝑗 .

However, due to the new arrival process, the message sampled from the distribution might be in

fact be “new” such that the false negative likelihood associated with this message is 0. And second,

in earlier iterations, new arrivals might have shifted this message from some higher popularity to

its current popularity.

For all upper bound variants, this first assumption causes us to add positive value when nothing

should have been added (further support for an upper bound). The second assumption means that

(1 − 𝑞 𝑗) used in (6) is an overestimate, again furthering to support the upper bound. This second

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:25

assumption has no affect on the uniform distribution, but on the bi-uniform distribution, when

sampled from the smaller value, we may be underestimating its likelhiood in earlier samples, such

that such terms in the computation is off by a factor of 𝑝ℎ/𝑝𝑙 (again, furthering support to the

upper bound).

□

B RESELECTING IS UPPER BOUND
To understand the challenge we are addressing here, consider a Markov Model which arrives in

state 𝑖 where the likelihood of self-transitioning depends upon a particular of the configuration:

in our problem, it is the specific set of 𝑖 messages that are recorded. An accurate model must

consider all possible such configurations, and then determine the likelihood of entering into state

𝑖 in a particular configuration and then modeling the self-transitioning process for each such

configuration. Instead, we assume that each time the self-transition is taken, the 𝑖 elements are

simply resampled. We show that our presumed process is in fact an upper bound on the more

accurate process. When computing our lower bound, note that we always assumed the same set of

elements being selected (the most popular), such that this issue does not arise.

We formulate the problem as a series of coin tossing sequences, where the different coins

represent different possible configurations (sets of 𝑖 elements sampled): entering the state in a

particular configuration and self-transitioning back to this same configuration is akin to selecting a

coin and reflipping this coin repeatedly. In contrast, resampling and choosing a new configuration

after each self-transition is akin to re-selecting a coin on each toss.

Consider a set of biased coins Ω = {𝑖} where the 𝑖th coin has probability 𝑃𝑖 of being selected and

flips to headswith probability 𝑝𝑖 . WLOG, sort the coins according to the 𝑝𝑖 such that 𝑖 < 𝑗 → 𝑝𝑖 ≤ 𝑝 𝑗 ,

where we make no implicit assumption about the relative sizes of the 𝑃𝑖 . Consider a series of rounds

in which a process𝜓 is used to select a coin each round and flip it. Let 𝜌 (𝜓) represent the rate of
heads for process𝜓 . We focus on two specific processes𝜓 .

• 𝜓𝑟 (random): each round, a new coin is sampled and flipped.

• 𝜓ℎ (held): after a flip of heads, a new coin is selected, but after a flip of tails, the same coin is

used in the subsequent round.

Theorem 4. 𝜌 (𝜓𝑟) ≥ 𝜌 (𝜓ℎ)

Proof. Let 𝜙𝑥𝑖 represent the steady-state likelihood of coin 𝑖 being the coin flipped in process 𝑥 .

Then 𝜌 (𝜓𝑥) =
∑
𝑖 𝜙

𝑥
𝑖 𝑝𝑖 .

In process 𝜓𝑟 , we have that 𝜙
𝑟
𝑖 = 𝑃𝑖 , whereas the likelihoods may be different in 𝜓ℎ , such that

there are constants 𝑀𝑖 where we write 𝜙
ℎ
𝑖 = 𝑀𝑖𝑃𝑖 for constants 𝑀𝑖 > 0 such that

∑
𝑖 𝑀𝑖𝑃𝑖 = 1.

We let Δ𝑖 = 𝜙
ℎ
𝑖 − 𝜙𝑟𝑖 = (𝑀𝑖 − 1)𝑃𝑖 represent the difference per 𝑖 of these steady-state likelihoods,

and note that since

∑
𝑖 𝜙

𝑥
𝑖 = 1, it must be that

∑
𝑖 Δ𝑖 = 0. We can therefore split Ω into two

sets, Ω+ = {𝑖 : Δ𝑖 ≥ 0} and Ω− = {𝑖 : Δ𝑖 < 0} such that

∑
𝑖∈Ω+ Δ𝑖 ≥ 0,

∑
𝑖∈Ω− Δ𝑖 < 0 and∑

𝑖∈Ω+ Δ𝑖 = −∑
𝑖∈Ω− Δ𝑖 .

Note that in process 𝜓ℎ , once a coin 𝑖 is selected, the number of rounds until obtaining a

heads is purely a function of 𝑝𝑖 , and is independent of 𝑃𝑖 : in fact, the probability of exceeding 𝑗

rounds is simply (1 − 𝑝𝑖) 𝑗 . If we define 𝐿𝑖 to be a random variable equal to the number of flips

in a row of coin 𝑖 when it is selected in 𝜓ℎ , we have that 𝐸 [𝐿𝑖] = 1/𝑝𝑖 , and by renewal theory,

𝜙ℎ𝑖 =
𝑃𝑖𝐸 [𝐿𝑖]∑
𝑗 𝑃 𝑗𝐸 [𝐿𝑗] =

𝑃𝑖
𝑝𝑖

∑
𝑗 𝑃 𝑗 /𝑝 𝑗 . So 𝑀𝑖 =

1

𝑝𝑖
∑

𝑗 𝑃 𝑗 /𝑝 𝑗 is decreasing with increasing 𝑝𝑖 . It follows that

there is some index 𝑛 and constants 0 < 𝑝+ < 𝑝− < 1 for which 𝑖 ≤ 𝑛 → 𝑝𝑖 ≤ 𝑝+ and 𝑖 ∈ Ω+
, and

otherwise 𝑖 > 𝑛 → 𝑝𝑖 > 𝑝− and 𝑖 ∈ Ω−
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

21:26 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

We thus have:

𝜌 (𝜓ℎ) − 𝜌 (𝜓𝑟) =
∑︁
𝑖

𝑝𝑖 (𝜙ℎ𝑖 − 𝜙𝑟𝑖) =
∑︁
𝑖

𝑝𝑖Δ𝑖 =
∑︁
𝑖∈Ω+

𝑝𝑖Δ𝑖 +
∑︁
𝑖∈Ω−

𝑝𝑖Δ𝑖 < 𝑝
+

∑︁
𝑖∈Ω+

Δ𝑖 + 𝑝−
∑︁
𝑖∈Ω𝑖

Δ𝑖 .

Since we have that 𝑝+ < 𝑝− ,
∑
𝑖∈Ω+ Δ𝑖 ≥ 0,

∑
𝑖∈Ω− Δ𝑖 < 0 and

∑
𝑖∈Ω+ Δ𝑖 = −∑

𝑖∈Ω− Δ𝑖 , we
conclude:

𝜌 (𝜓ℎ) − 𝜌 (𝜓𝑟) = 𝑝+
∑︁
𝑖∈Ω+

Δ𝑖 + 𝑝−
∑︁
𝑖∈Ω𝑖

Δ𝑖 ≤
∑︁
𝑖∈Ω+

Δ𝑖 +
∑︁
𝑖∈Ω𝑖

Δ𝑖 = 0.

□

C UNIFORM UPPER BOUNDING LEMMA
Define 𝑃𝐾X (𝑗) to be the probability that when sampling 𝐾 elements without replacement from

distribution X, that element 𝑗 is one of the 𝐾 sampled elements.

Lemma 2. For any distribution X, when sampling 𝐾 elements without replacement,
∑
𝑗 𝑃

𝐾
X (𝑗) = 𝐾 .

Proof. Let 𝐸 𝑗 be an indicator random variable that equals 1 when element 𝑗 is one of the 𝐾

elements included in the sample (without replacement). Clearly

∑
𝑗 𝐸 𝑗 = 𝐾 (exactly 𝐾 distinct

elements are sampled), such that

∑
𝑗 𝐸 [𝐸 𝑗] = 𝐸 [

∑
𝑗 𝐸 𝑗] = 𝐾 . Because 𝐸 𝑗 is an indicator, we have

𝐸 [𝐸 𝑗] = 𝑃𝐾X (𝑗). □

Some of our proofs will make use of the fact that sampling without replacement is easily emulated

by using a sampling with replacement process. Given a distribution Q (where we sort elements

from highest sampling likelihood to smallest), to sample 𝐾 items without replacement, we sample

with replacement, and discard any repeated selections until we select 𝐾 distinct elements. In the

case of Q, we can do each such sampling by directly sampling the elements proportional to their

probability. Note that a particular sequence of sampling ℓ elements (with replacement : (𝑖1, 𝑖2, . . . , 𝑖ℓ)
occurs with probability

∏ℓ
𝑗=1 𝑞𝑖 𝑗 .

An slight variant on this method of sampling that we will use later is to repeatedly choose a value

𝑥 uniformly within [0, 1), and selecting item 𝑗 when 𝑥 falls within [𝜌 𝑗−1, 𝜌 𝑗), where 𝜌 𝑗 =
∑𝑗

𝑛=1
𝑞𝑛 ,

i.e., a region of size 𝑞 𝑗 .

Lemma 3. For any 𝐾 , 𝑃𝐾Q (𝑗) is a non-increasing sequence of 𝑗 .

Proof. We consider two elements in particular, 𝑗 and 𝑗 ′ < 𝑗 and show that 𝑃𝐾Q (𝑗
′) ≥ 𝑃𝐾Q (𝑗)

using sample path analysis upon sampling-with-replacement sequences that are used to emulate

sampling without replacement.

Consider the set of all distinct sample paths that select 𝐾 elements without replacement from Q
by using the sampling-with-replacement process above. Any sample path 𝑃 that contains neither 𝑗

nor 𝑗 ′ contributes to neither probability measure, and any sample path that contains both 𝑗 and 𝑗 ′

contributes equally to both elements’ probability measures.

Now consider a sample path 𝑃 that contains samples of 𝑗 but none of 𝑗 ′. We map this sample

path to an alternative sample path 𝑃 ′ that replaces each sample of 𝑗 with 𝑗 ′. While the former

contributes only to the probability measure of 𝑗 , the latter only contributes to the probability

measure of 𝑗 ′. Since we replace an independent sampling of likelihood 𝑞 𝑗 with one of likelihood

𝑞 𝑗 ′≥𝑞 𝑗 , the likelihood of path 𝑃 ′ is no less than that of 𝑃 . Since this mapping is one-to-one, clearly

the sum of the probabilities over all sample paths that include element 𝑗 is no larger than the sum

over those including element 𝑗 ′.
□

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:27

The likelihood of a false negative event in the 𝑖th state of the Markov Model implies that the

𝑖 + 1st arriving message differs from the preceding 𝑖 messages that are recorded in the RBF. For a

𝐷-element distribution Q, the probability of such an event is thus

∑𝐷
𝑗=1 𝑞 𝑗 (1−𝑃𝑖Q (𝑗)), i.e., summing

over all possible elements 𝑗 , that the 𝑖 + 1st sample is 𝑗 and that it was not one of the previous 𝑖

samples (wihtout replacement). It is slightly easier to work with the negation of this event, the

non-false negative: the probability that the 𝑖 + 1st arriving element is not a false negative, which is

1 − ∑𝐷
𝑗=1 𝑞 𝑗 (1 − 𝑃𝑖Q (𝑗)) =

∑𝐷
𝑗=1 𝑞 𝑗𝑃

𝑖
Q (𝑗), i.e., the 𝑖 + 1st sample was previously sampled.

Theorem 5. The uniform distributionU over 𝐷 elements, each of whose elements has sampling
likelihood of 1/𝐷 , has the largest false negative rate in state 𝑖 (where 𝑖 elements have already been
recorded in the RBF).

Proof. From Lemma 2, we have that

∑
𝑗 𝑃

𝑖
U (𝑗) = 𝑖 , and since all elements are identical in U, it

must be that 𝑃𝑖U (𝑗) = 𝑖/𝐷 . We prove that U has the lowest non-false negative rate by showing

that

∑𝐷
𝑗=1 𝑞 𝑗𝑃

𝑖
Q (𝑗) −

∑𝐷
𝑗=1 1/𝐷 (𝑖/𝐷) ≥ 0, which we can rewrite as

∑𝐷
𝑗=1 (𝑞 𝑗𝑃𝑖Q (𝑗) − 1/𝐷 (𝑖/𝐷)) > 0.

We can rewrite the above sum as the sum of 𝑆1 and 𝑆2 where 𝑆1 =
∑𝐷
𝑗=1 𝑞 𝑗 (𝑃𝑖Q (𝑗) − 𝑖/𝐷) and

𝑆2 =
∑𝐷
𝑗=1 𝑖/𝐷 (𝑞 𝑗 − 1/𝐷). For 𝑆1, note that by Lemma 2,

∑𝐷
𝑗=1 𝑃

𝑖
Q (𝑗) = 𝑖 =

∑𝐷
𝑗=1 𝑖/𝐷 and so∑𝐷

𝑗=1 (𝑃𝑖Q (𝑗) − 𝑖/𝐷) = 0, and since by Lemma 3, we have that the 𝑃𝑖Q (𝑗) are non-increasing, there
must be some 𝑘 for which 𝑗 ≤ 𝑘 ↔ 𝑃𝑖Q (𝑗) ≥ 𝑖/𝐷 , such that we can decompose 𝑆1 into two positive

parts 𝑇1 −𝑇2 where 𝑇1 =
∑𝑘
𝑗=1 𝑞 𝑗 (𝑃𝑖Q (𝑗) − 𝑖/𝐷) and 𝑇2 =

∑𝐷
𝑗=𝑘+1 𝑞 𝑗 (𝑖/𝐷 − 𝑞 𝑗𝑃𝑖Q (𝑗)). Finally noting

that each term in 𝑇1 satisfies 𝑞 𝑗 (𝑃𝑖Q (𝑗) − 𝑖/𝐷) ≥ 𝑞𝑘 (𝑃𝑖Q (𝑗) − 𝑖/𝐷) and each term in 𝑇2 satisfies

𝑞 𝑗 (𝑖/𝐷 − 𝑞 𝑗𝑃𝑖Q (𝑗)) ≤ 𝑞𝑘+1 (𝑖/𝐷 − 𝑃𝑖Q (𝑗) we have that

𝑆1 =

𝑘∑︁
𝑗=1

𝑞 𝑗 (𝑃𝑖Q (𝑗) − 𝑖/𝐷) −
𝐷∑︁

𝑗=𝑘+1
𝑞 𝑗 (𝑖/𝐷 − 𝑞 𝑗𝑃𝑖Q (𝑗)) (29)

≥
𝑘∑︁
𝑗=1

𝑞𝑘 (𝑃𝑖Q (𝑗) − 𝑖/𝐷) −
𝐷∑︁

𝑗=𝑘+1
𝑞𝑘+1 (𝑖/𝐷 − 𝑞 𝑗𝑃𝑖Q (𝑗)) (30)

= 𝑞𝑘

𝑘∑︁
𝑗=1

(𝑃𝑖Q (𝑗) − 𝑖/𝐷) − 𝑞𝑘+1
𝐷∑︁

𝑗=𝑘+1
(𝑖/𝐷 − 𝑞 𝑗𝑃𝑖Q (𝑗)) (31)

≥ 𝑞𝑘+1

𝐷∑︁
𝑗=1

(𝑃𝑖Q (𝑗) − 𝑖/𝐷) (32)

= 0 (33)

We proceed with showing 𝑆2 ≥ 0 similarly by using the fact that distributions always sum to 1

(such that

∑𝐷
𝑗=1 (𝑞 𝑗 − 1/𝐷) = 0 whose terms are non-increasing) to obtain our result.

□

D BIUNIFORM UPPER BOUNDING LEMMA
Definition 1. Consider two 𝑑-length sequences 𝐴 = 𝑎1, 𝑎2, . . . , 𝑎𝑑 and 𝐵 = 𝑏1, 𝑏2 . . . , 𝑏𝑑 where∑𝑑
𝑖=1 𝑎𝑑 =

∑𝑑
𝑖=1 𝑏𝑑 . We say sequence𝐴 dominates sequence𝐵 with crossover point 𝑗 if𝑎𝑖 ≥ 𝑏𝑖 ↔ 𝑖 ≤ 𝑗 ,

i.e., The sequence 𝐴 starts off larger than its corresponding element in 𝐵 until crossing index 𝑗 , and
from then on is smaller. We say that 𝐴 semi-dominates 𝐵 if a crossover point 𝑗 exists such that
𝑖 ≤ 𝑗 → 𝑎𝑖 ≥ 𝑏𝑖 , i.e., some 𝑎𝑖 > 𝑏𝑖 are possible even for 𝑖 > 𝑗 .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

21:28 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

Note this definition of a dominating sequence extends easily to a pair of 𝑑-element distributions,

where for each distribution, the sum over all 𝑑 elements must be one.

Given two distributions, Q and X where Q dominates X, we will apply the above sampling-with-

replacement approach to Q, but will alter the sampling space of X somewhat to align it with Q as

follows:

Q0 Q1 Q2 Q3 Q4

X0 X1 X2 X3 X4

X0 X1 X2 X3
(1)

X4
(1)

y’

X3 fills gaps
X4 fills
gaps

Remapping of Xn

y A C

Q0 Q1 Q2 Q3 Q4

X0 X1 X2 X3 X4

X0 X1 X2 X3
(1)

X4
(1)

y’

X3 fills gaps
X4 fills
gaps

Remapping of y’

y A C

Fig. 9. Sample 𝑑 = 5 element distributions with Q dominating X with crossover point 2 (𝑞𝑖 ≥ 𝜒𝑖 for 𝑖 ≤ 2). X
is reconfigured on the bottom for purposes of computing sample path, such that the 𝜒𝑖 start at the same
point as 𝑞𝑖 for 𝑖 ≤ 2, and 𝜒3 and 𝜒4 must be "chopped up" and distributed into the gaps. On the left, we remap
the non-gap sample 𝑦′to the bump, and on the right we remap one bump sample to another bump.

For each item 𝑗 where 𝑞 𝑗 ≥ 𝜒 𝑗 , we select item 𝑗 fromX when 𝑥 falls in the region [𝜌 𝑗−1, 𝜌 𝑗−1+𝜒 𝑗).
These intervals in X are “spaced apart” from one another, leaving gaps, but always fitting inside the

region allocated to 𝑞 𝑗 . For the remaining 𝑗 where 𝑞 𝑗 < 𝜒 𝑗 , we assign the same region [𝜌 𝑗−1, 𝜌 𝑗) to
cover part of the 𝜒 𝑗 that are too large to fit entirely within the interval. The remaining parts of the

𝜒 𝑗 > 𝑞 𝑗 are covered by the unused “gaps” that exist where intervals are spaced apart. This is depicted

in Fig. 9. Note that even with this "chopped up" layout, the likelihood of sampling any element 𝜒 𝑗
remains equal to its probability mass, such that it can be used in the sampling-with-replacement

process to identify 𝐾 items sampled without replacement with accurate likelihood.

Define Q(𝑥) andX(𝑥) to equal the elements that a uniformly chosen 𝑥 maps to under the respec-

tive distributions. Then a sequence 𝑋 = (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥ℓ) whose samples are chosen uniformly

at random from the unit interval maps to respective sequences 𝑆1 = (Q(𝑥1),Q(𝑥2), . . . ,Q(𝑥ℓ))
and 𝑆2 = (X(𝑥1),X(𝑥2), . . . ,X(𝑥ℓ)), which are respectively sequences of elements (with possible

repetition) in Q and X. With large enough ℓ , both sequences will contain at least 𝐾 distinct samples

under these distributions such that the first 𝐾 distinct samples under each distribution are the

samples chosen without replacement.

Let us state an obvious result that we will utilize:

Lemma 4. Consider a set of 𝐾 distinct elements selected from distribution D by the sampling-with
replacement above described above with sequence (𝑥1, 𝑥2, . . . , 𝑥ℓ). Then a reordering of the sequence
will still sample the same set of 𝐾 distinct elements.

Proof. The set of elements sampled does not change by reordering the sampling points, such

that every of the 𝐾 elements is still sampled and no element that was previously not sampled can

now be sampled. □

Let us now distinguish between two types of sampling points 𝑥 :

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:29

• gap-fillers: these are points that sample within the "gaps", i.e., they will select an element in

the dominating Q whose position in the distribution lies at or before the dominating point 𝑗 ,

and an element in the dominated X that lies after 𝑗 .

• non-gap: these are points that sample outside the gaps, such that the sample for each of Q
and X whose position within the respective distributions is identical.

In Fig. 9, sample points 𝑥 are shown at the bottom, with arrows pointing to their sample location.

𝐴 is a non-gap, 𝑦 and 𝐶 are gap-fillers, and 𝑦′ is non-gap in the left figure, and is a gap-filler in the

right figure.

Note that there is a bijective mapping for non-gap samples, i.e., a non-gap sample within Q
uniquely determines the corresponding non-gap sample within X, and vice versa.

We define 𝑃𝐾D (𝑖) to be the probability that a sampling of 𝐾 elements from distributionD without

replacement includes element 𝑖 .

Lemma 5. Let Q = {𝑞1, . . . 𝑞𝑑 } and X = {𝜒1, . . . , 𝜒𝑑 } be two distributions where Q dominates
X with crossover point 𝑗 ′. If 𝐾 < 𝑑 items are sampled without replacement from each distribution,
and let 𝑃D (𝑖) be the probability that item 𝑖 is included in the 𝐾 elements sampled from distribution
D ∈ {Q,X}. Then 𝑖 ≤ 𝑗 ′ → 𝑃𝐾Q (𝑖) ≥ 𝑃𝐾X (𝑖).

This is an intuitive result that the probability of sampling a dominating element is larger than

the probability of sampling its dominated counterpart. While intuitive, it is hard to prove when

sampling without replacement. In the context of Fig. 9, the order in which 𝑦,𝐴,𝐶,𝑦′ are sampled

does not affect the set of distinct items chosen.

Proof. Consider the two sequences

𝑆1 = (Q(𝑥1),Q(𝑥2), . . . ,Q(𝑥ℓ)) and 𝑆2 = (X(𝑥1),X(𝑥2), . . . ,X(𝑥ℓ)) of elements generated

from an i.i.d. uniform sampling sequence (𝑥1, 𝑥2, . . . , 𝑥ℓ). The measure of the set of all sequences

(𝑥1, 𝑥2, · · · , 𝑥ℓ) ∈ 𝑋 that map specifically to 𝑆1 and 𝑆2 respectively under distributions Q and X
respectively equal

∏ℓ
𝑗=1𝐴 𝑗 and

∏ℓ
𝑗=1 𝐵 𝑗 where 𝐴 𝑗 is the measure of all 𝑥 that satisfy Q(𝑥) = Q(𝑥 𝑗)

and 𝐵 𝑗 are all the 𝑥 that satisfy X(𝑥) = X(𝑥 𝑗).
We prove the result by contradiction and assume that 𝑃Q (𝑖) < 𝑃X (𝑖) for some 𝑖 ≤ 𝑗 ′. This means

that there must have been a sequence of sampling-with-replacement 𝑥 ’s (𝑥1, 𝑥2, . . . 𝑥ℓ) that selects
𝐾 distinct elements in X, where 𝑖 is one of the first 𝐾 distinct elements selected under X, but is not

one of the first 𝐾 distinct elements selected under distribution Q. This means there is some𝑚 ≤ ℓ

such that 𝑥𝑚 is a sample where X(𝑥𝑚) = 𝑖 . However, since 𝑖 ≤ 𝑗 ′, 𝑥𝑚 must also satisfy Q(𝑥𝑚) = 𝑖 .
In the example Fig. 9, 𝑥𝑚 falls within the region mapping to the 𝑖 = 1st element in X, such that it

must also fall within the region covering the 𝑖th element in Q.

Since the 𝑖th element is clearly sampled within Q within the first ℓ samples, the only way for 𝑖

to not appear as one of the 𝐾 sampled elements under Q is if all of its 𝐾 distinct elements were

chosen prior to this𝑚th sampling, i.e., some 𝑥 𝑗 mapped to the 𝐾th distinct element under Q with

𝑗 < 𝑚. In order for Q to complete its sampling of 𝐾 elements prior to the𝑚th selection of 𝑥 , Q
must have “gotten ahead” in the count of distinct elements.

We now consider a reordering (𝑦1, 𝑦2, · · · , 𝑦𝑚−1) of the sample points (𝑥1, 𝑥2, · · · 𝑥𝑚−1), where
the reordering places all non-gap samples ahead of gap-fillers. By Lemma 4, the sets of elements

sampled will remain the same. During the sampling using this reordered sequence, the bijective

nature of the mapping of non-gap samples ensures that during this initial part of the sampling

sequence where we are only sampling non-gap samples, the number of distinct elements sampled

in X matches that of Q. Only when we get to the gap-filler sample points can there be a difference.

How can gap-fillers cause Q to "get ahead"? The uniform sample must sample an element 𝑓 ∈ X
has has been previously sampled, while sampling an element 𝑒 ∈ Q that has not been previously

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

21:30 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

sampled. Hence, it must be a gap-filler that falls into a gap associated with 𝑓 > 𝑗 ′ where the

corresponding 𝑒 ≤ 𝑗 ′ has not yet been sampled. We call any such uniform sample a bump. In Fig. 9,

𝑦 is a bump in both versions, 𝐶 is not a bump (because of 𝐴), and 𝑦′ is a bump in the righthand

figure. Note bump samples are the only samples that can increase the count of distinct elements in

Q while leaving the number of distinct elements in X unchanged.

To see the impact of bump samples on a particular element 𝑓 > 𝑗 ′, we again reorder the elements

such that bump samples on 𝑓 come before non-bump samples on 𝑓 . For the case where the non-gap

𝑓 was previously sampled (adding distinct element 𝑓 for both Q and X, then each bump sample

adds a distinct element to Q while making no change to X (since 𝑓 has already been added), and

the subsequent non-bump samples do not add elements to either Q or X. Hence, the number of

bumps equals the number of bump samples. For the case where the non-gap 𝑓 was not previously

sampled, the first bump adds an element to both Q and since it is the first sample to add 𝑓 to X,

such that the number of bumps is one less than the number of bump samples. Hence Q "gets ahead"

by bumps to 𝑓 only when there is more than one bump to 𝑓 , or when there is the non-gap 𝑓 sample

and at least one bump.

For the case where 𝑓 does cause Q to get ahead, we modify a single sample 𝑦 ∈ (𝑦1, . . . , 𝑦𝑚−1) as
follows: we select 𝑦 to be a bump. Let 𝑒∗ be the distinct element in Q that it samples. We then select

another 𝑦′ ∈ (𝑦1, . . . , 𝑦𝑚−1) that maps either to another bump or else maps the non-gap sample

that selected 𝑓 (one of which must exist for Q to have gotten ahead). We then replace 𝑦′ with a

sample that maps instead to the non-gap 𝑒∗. If there are several samples of 𝑦 that map to the same

gap region (or non-gap 𝑓) as 𝑦′, we modify them all similarly.

Note the change in 𝑦′ adds 𝑒∗ to X: it was not added previously because no non-gap sample had

added 𝑒∗. Additionally, Q either no longer samples 𝑓 (in the case that 𝑦′ was the non-gap sample

to 𝑓), or it no longer samples the 𝑒 that was covered by the bump that was sampled by 𝑦′. Hence,
we have increased the number of distinct samples in X by 1, and decreased the number of distinct

samples in Q by 1. This is depicted in both version displayed in Fig 9. On the left, the move of 𝑦′

removes 𝑄3 from Q and adds 𝑋0 to X. On the right, the move of 𝑦′ removes 𝑄2 from Q and again

adds 𝑋0 to X. Note that in both cases, sample 𝑦 had already added 𝑄0 to Q
Furthermore, the measure of the set of possible 𝑦′ that could map to 𝑓 is bounded by the size of

𝑓 in X, whereas the measure of the set of possible replaced 𝑦′ that could map to non-gap 𝑒∗ is the
size of 𝑒∗ in X. Since 𝑒∗ ≤ 𝑗 ′ < 𝑓 , we have that the measure of 𝑒∗ is larger, and we our mapping

maps a sample path with a smaller probability to one with larger probability.

We can repeat the above process for all 𝑓 that might cause Q to get ahead until we reach a

sequence where Q falls behind in the number of distinct elements it samples by the𝑚 − 1st sample.

By again applying Lemma 4, to return to the original ordering (with the appropriate elements

replaced), we have demonstrated that for each sample path that might permit an element 𝑖 ≤ 𝑗 ′ to
be added to X but not Q, there is a one-to-one mapping to a sample path with larger measure that

permits element 𝑖 ≤ 𝑗 ′ to be added to Q, but not X.

□

Corollary 4. If Q dominates X with crossover point 𝑗 ′, then for all 𝐾 , 𝑃𝐾Q (𝑖) semi-dominates
𝑃𝐾X (𝑖) with the same crossover point 𝑗 ′′ ≥ 𝑗 ′.

Theorem 6. Let Q = {𝑞1, . . . 𝑞𝑑 } and X = {𝜒1, . . . , 𝜒𝑑 } be two distributions where Q dominates X
to crossover point 𝑗 ′, and 𝜒 𝑗 = 𝜒 𝑗+1 for all 𝑗 > 𝑗 ′ (i.e., X "flattens"). Then the false negative rate of Q
is lower than that of X

Proof. When distribution Q dominates X, Corollary 4 gives us that 𝑃𝐾Q (𝑖) semi-dominates 𝑃𝐾X
with a crossover point at least as large 𝑗 ′′ ≥ 𝑗 ′ for all 𝐾 . Note that for 𝑗 > 𝑗 ′′, if Q 𝑗 − X𝑗 ≤ 0, then

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:31

because Q is non-increasing in 𝑗 , and 𝜒 𝑗 = 𝜒 𝑗+1 for all 𝑗 ≥ 𝑗 ′, it must be that Q 𝑗+1 − X𝑗+1 ≤ 0, i.e.,

once this difference is smaller than 0, it stays smaller than 0. Hence, following the line of proof

used for Theorem 5, splitting into a positive weighted 𝑇1 and negative weighted 𝑇2 at crossover

point 𝑗 ′′, we show that the false negative rate over distribution X is larger than that of Q for all 𝐾 .

□

Corollary 5. Let X be a bi-uniform distribution where Q dominates X, and the index 𝑠 where X
switches from higher popularity 𝑝ℎ to lower popularity 𝑝𝑙 occurs at a point where 𝑝ℎ ≤ 𝑞𝑠 . Then the
false negative rate of X is larger than that of Q.

Proof. Since 𝑝ℎ ≤ 𝑞𝑠 , it must be that 𝑝ℎ ≤ 𝑞 𝑗 for all 𝑗 ≤ 𝑠 . Then at some larger 𝑗 ′′ > 𝑠 , there is a
first occurrence where 𝜒 𝑗 ′′ = 𝑝𝑙 > 𝑞 𝑗 ′′ perhaps even 𝑗

′′ = 𝑠 + 1. However, wherever this 𝑗 ′′ occurs,
distributions Q and X satisfy the requirements of Theorem 6 (i.e., Q dominates X at least to point

𝑠 after which X is assured to be "flat". □

E RENEWAL RESULTS
The previous formula assumed independence between 𝜂 𝑗 and Bℓ, 𝑗 when they appear in the numer-

ator of (21) when in fact they are clearly not (i.e., Bℓ, 𝑗 is defined in terms of 𝜂 𝑗 .

One approach would be use a revised Bℓ, 𝑗 that conditions on element 𝑖 not having been one

of the messages received during the current cycle prior to the 𝑗 iteration. Define 𝑆−𝑖, 𝑗 to be an

indicator that is 1 when element 𝑖 is not sampled in the first 𝑗 arrivals. Then what we really need

in place of (21) is :

𝑃 (C𝑗 = 1) =

𝐷∑︁
𝑖=1

(1 − 𝑞𝑖) 𝑗𝑞𝑖
𝜎+𝑘∑︁
ℓ=0

𝑃 (Bℓ, 𝑗−1 = 1|𝑆−𝑖, 𝑗−1 = 1) (1 − 𝜏𝑘 (ℓ, ℓ)) (34)

i.e., we could define 𝑃 (𝜂 (−𝑖)
𝑗

= 1) as 𝜂 𝑗 conditioned on element 𝑖 not having been received, and

𝑃 (B (−𝑖)) = 𝑃 (Bℓ, 𝑗−1 = 1|𝑆−𝑖, 𝑗−1 = 1) distinctly for each 𝑖 as:

𝑃 (𝜂 (−𝑖)
𝑗

= 1) =

𝐷−1∑︁
𝑚=1

(1 − 𝑞′𝑚) 𝑗−1𝑞′𝑚 (35)

𝑃 (B (−𝑖)
ℓ, 𝑗

= 1) =


(1 − 𝑃 (𝜂 (−𝑖)

𝑗
= 1)𝑃 (B (−𝑖)

ℓ, 𝑗−1 = 1)+
𝑃 (𝜂 (−𝑖)

𝑗
= 1)∑𝑘

𝑚=0 𝑃 (B
(−𝑖)
ℓ−𝑚,𝑗−1 = 1)𝜏𝑘 (ℓ −𝑚, ℓ) ℓ ≤ 𝜎

0 𝑙 > 𝜎

(36)

where {𝑞′𝑚} are the (re-normalized) elements of Q with element 𝑖 removed from the distribution

(i.e., allowing sampling conditioned not choosing 𝑖). And then

𝑃 (C𝑗 = 1) =

𝐷∑︁
𝑖=1

(1 − 𝑞𝑖) 𝑗𝑞𝑖
𝜎+𝑘∑︁
ℓ=0

𝑃 (B (−𝑖)
ℓ, 𝑗−1 = 1) (1 − 𝜏𝑘 (ℓ, ℓ)) (37)

However, this approach substantially increases the complexity of computing 𝑃 (C𝑗 = 1), which
we would rather avoid.

Theorem 7. 𝑃 (Bℓ+𝑘,𝑗) ≥ 𝑃 (B (−𝑖)
ℓ, 𝑗

).

Proof. Consider the following approach to sampling 𝑗 items from Q, conditioned on not sam-

pling element 𝑖: sample from Q, and whenever sample 𝑖 is chosen, simply discard it. Clearly, the

resulting sample path has no elements 𝑖 and each element was sampled proportionally to its value

in Q. Consider a specific sample path 𝑃 that generated the 𝑗-element sample without 𝑖: 𝑃 contains

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

21:32 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

𝑗 ′ ≥ 𝑗 samples where the number of times element 𝑖 was sampled is 𝑗 ′ − 𝑗 . Let 𝑁 (𝑃) be the unique
number of elements in the 𝑗 ′-length sample excluding element 𝑖 , i.e., the number of distinct elements

in the length 𝑗 sampling without 𝑖 . Alternatively, we can measure 𝑁 ′ (𝑃) as the number of distinct

elements within the first 𝑗 samples including 𝑖 , i.e., 𝑁 ′ (𝑃) is the number of distinct samples from a

sampling where we include 𝑖 . Since both 𝑁 (𝑃) and 𝑁 ′ (𝑃).
We claim that 𝑁 ′ (𝑃) ≤ 𝑁 (𝑃) + 1. This is because 𝑁 ′ (𝑃) contains 𝑗 ′ − 𝑗 instances of element 𝑖

(counting as a single distinct element), whereas 𝑁 (𝑃) has a final set of 𝑗 ′ − 𝑗 samples of elements

other than 𝑖 that are not included in the count of 𝑁 ′ (𝑃). 𝑁 (𝑃) − 𝑁 ′ (𝑃) is smallest when these

final 𝑗 ′ − 𝑗 elements are re-samples of earlier elements. In this case, 𝑁 ′ (𝑃) would have 1 additional

element (𝑖) not counted by 𝑁 (𝑃). 𝑁 (𝑃) could of course be much larger if some of these final 𝑗 ′ − 𝑗

elements were not previously sampled.

Finally, due to the pseudo-random nature of the hash functions, the distribution on number of

bits set in the RBF is a function of the number of distinct elements recorded, i.e., it does not depend

upon which are recorded. For our sample path 𝑃 , if the 𝑁 (𝑃) distinct messages do not exceed the 𝜎

bound, then adding one additional message cannot exceed the 𝜎 + 𝑘 bound, since the additional

message can set at most 𝑘 additional bits. It follows that for each sample path 𝑃 , whenever the

𝑁 (𝑃) distinct messages do not exceed the 𝜎 bound, then the 𝑁 ′ (𝑃) ≤ 𝑁 (𝑃) + 1 distinct messages

cannot exceed the 𝜎 + 𝑘 bound.

By observing that the probability of not exceeding the 𝜎 bound involves summing over all the

measure of all sample paths 𝑃 times the likelihood that the 𝑁 (𝑃) recorded elements don’t cross the

𝜎 theshhold. Since this likelihood is no more than the likelihood of 𝑁 ′ (𝑃) elements crossing the

𝜎 + 𝑘 threshold, and since the probability of exceeding the 𝜎 + 𝑘 bound with 𝑖 included equals the

measure of these paths 𝑃 times the likelihood that the 𝑁 ′ (𝑃) elements exceed the 𝑠𝑖𝑔𝑚𝑎 + 𝑘 bound,

the result holds. □

E.1 Truncated Renewal Process is an upper bound
Define 𝛼 (𝑖,𝑚) = ∑𝑚

𝑗=𝑖 𝐸 [𝐶 𝑗] and 𝛽 (𝑖,𝑚) = ∑𝑚
𝑗=𝑖 𝐸 [A 𝑗], and R(𝑖, 𝑗) = 𝛼 (𝑖, 𝑗)/𝛽 (𝑖, 𝑗). Then the false

negative rate can be expressed as R(1,∞).
Note that since 𝑃 (𝜂 𝑗 = 1) (1 − 𝛾𝑘 (𝑗)) is non-increasing in 𝑗 and converges to 0, we have that

𝛼 (1,𝑚) =

𝑚∑︁
𝑗=1

𝐸 [𝐶 𝑗] =
𝜎+𝑘∑︁
ℓ=0

𝑃 (Bℓ, 𝑗−1 = 1)𝑃 (𝜂 𝑗 = 1) (1 − 𝛾𝑘 (𝑗) (38)

≥ 𝑃 (𝜂𝑚 = 1) (1 − 𝛾𝑘 (𝑚))𝛽 (1,𝑚) (39)

𝛼 (𝑚 + 1,∞) =

∞∑︁
𝑗=𝑚+1

𝐸 [𝐶 𝑗] =
𝜎+𝑘∑︁
ℓ=0

𝑃 (Bℓ, 𝑗−1 = 1)𝑃 (𝜂 𝑗 = 1) (1 − 𝛾𝑘 (𝑗) (40)

≤ 𝑃 (𝜂𝑚 = 1) (1 − 𝛾𝑘 (𝑚))𝛽 (𝑚 + 1,∞) (41)

such that R(1,𝑚) ≥ 𝑃 (𝜂𝑚 = 1) (1 − 𝛾𝑘 (𝑚) ≥ R(𝑚 + 1,∞).
For any𝑚, R(1,∞) ≤ R(1,𝑚). The proof is to rewrite as:

𝛼 (1,𝑚) + 𝛼 (𝑚 + 1,∞)
𝛽 (1,𝑚) + 𝛽 (𝑚 + 1,∞) ≤ 𝛼 (1,𝑚)

𝛽 (1,𝑚)
and look at the conditions for this to hold true. Multiplying through and reducing yields:

𝛼 (𝑚 + 1,∞)𝛽 (1,𝑚) ≤ 𝛼 (1,𝑚)𝛽 (𝑚 + 1,∞)
Recalling that 𝛼 (1,𝑚) ≥ 𝑃 (𝜂𝑚 = 1) (1 − 𝛾𝑘 (𝑚))𝛽 (1,𝑚) and that 𝛼 (𝑚 + 1,∞) ≤ 𝑃 (𝜂𝑚 = 1) (1 −

𝛾𝑘 (𝑚))𝛽 (𝑚 + 1,∞), we get

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

Analysis of False Negative Rates for Recycling Bloom Filters (Yes, They Happen!) 21:33

𝛼 (𝑚 + 1,∞)𝛽 (1,𝑚) ≤ 𝑃 (𝜂𝑚 = 1) (1 − 𝛾𝑘 (𝑚))𝛽 (𝑚 + 1,∞)𝛽 (1,𝑚) ≤ 𝛼 (1,𝑚)𝛽 (𝑚 + 1,∞),

so the result always holds.

F OPTIMAL NUMBER OF HASH FUNCTIONS

Fig. 10. 𝑘 parameter to minimize False Negative Rate for a given False Positive tolerance.

We have already seen that the choice of the number of hash functions 𝑘 clearly has an impact on

RBF performance, with respect to both False Positive and False Negative rates, and for each fixed

set of parameters there is an "optimal" 𝑘 . Historically, this parameter has been chosen through

either approximations based on the "worst case" False Positive rate, or by a kind of "trial and error"

approach [27]. We investigate this relationship by plotting best values of k for one and two-phase

RBFs in Fig. 10. The total RBF memory is𝑀 = 10, 000 (5, 000 each for the two-phase RBF).

We see that the optimal value of 𝑘 follows a monotonically-decreasing trend with the False

Positive rate; the relationship is also somewhat nonlinear, emphasizing the need for an analytical

method to find it exactly.

G ADDITIONAL MARKOV MODEL DETAILS
G.1 Markov Model 2-phase
The active filter and frozen filter can be evaluated independently. This assumes that bits in the

active filter are filled even when a message is marked as repeat by the frozen filter, and that hash

functions "rotate" each time we change a filter (such that the same message sets different bits in

active and frozen). Note this latter property only affects the independence of the "get lucky" process,

so its effect is likely negligible.

The steady state of the system is simply

∑
𝑖, 𝑗 Π𝑖𝐹 𝑗 , and outgoing transitions are as pictured below:

G.2 Disabling

ℎ𝑖 (𝑗 + 1) =
𝑝𝑟

(1 − 𝑝𝑟) + 𝑝𝑟 𝑓𝑛 [𝑗]
[ℎ𝑖 (𝑗) + (1 − ℎ𝑖 (𝑗))𝑞𝑖] + (42)

1 − 𝑝𝑟
(1 − 𝑝𝑟) + 𝑝𝑟 𝑓𝑛 [𝑗]

[
𝑑𝑖 + ℎ𝑖−1 (𝑗)

∑︁
𝑖′<𝑖

𝑑𝑖′ + ℎ𝑖 (𝑗)
∑︁
𝑖′>𝑖

𝑑𝑖′

]
(43)

Unlike the renewal case, we update ℎ𝑖 only when transitioning from state 𝑗 to state 𝑗 + 1.

Note that this update can occur during a repeat transmission or during a new arrival transition.

Conditioned on not taking the self-loop, these relative probabilities are respectively
𝑝𝑟

(1−𝑝𝑟)+𝑝𝑟 𝑓𝑛 [𝑗]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

21:34 Kahlil Dozier, Loqman Salamatian, and Dan Rubenstein

𝑝!(1 − %𝑓" 𝑖)

𝑖

(Repeat)

𝑝! %𝑓" 𝑖 %𝑓" 𝑗 (1 − 𝛾#(𝑖)) (1 − 𝛾#(𝑗))
doesn’t “get lucky”

(1 − 𝑝!) + 𝑝! %𝑓" 𝑖 (1 − %𝑓" 𝑗 + 	 %𝑓" 𝑗 [1 − (1 − 𝛾# 𝑖)
(1 − 𝛾# 𝑗)]

New or seen in frozen or “gets lucky”

𝜎
exceeded?

Y

N

To state 1

To state 𝑖 + 1

𝜌(𝑖)

1	 − 𝜌(𝑖)

Fig. 11. Markov model showing state transitions of our model. Red transitions are dashed and indicate a
false negative event.

and
1−𝑝𝑟

(1−𝑝𝑟)+𝑝𝑟 𝑓𝑛 [𝑗]
, i.e., we must normalize by the likelihood that the self-loop transition was not

finally not taken, i.e., thin by 1 minus the probability of the self-loop being taken.

Received January 2023; revised April 2024; accepted April 2024

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 21. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Background
	2.1 Bloom Filters
	2.2 RBF variants and Measuring False Positives

	3 Model Preliminaries
	3.1 Distributions
	3.2 Two-phase Variants
	3.3 Analyzing False Negative Rate

	4 Markov Model Approaches
	4.1 Transitions
	4.2 Upper bounds, lower bound, and approximation

	5 Renewal Model
	5.1 One-Phase RBF, repeats only
	5.2 Extension for New Arrivals

	6 Analytical Model Validation and Results
	6.1 Model Accuracy, Comparisons and Trends
	6.2 Computation Time Comparison
	6.3 Trade-off Between Filter Parameters, False Positives and False Negatives
	6.4 One Phase vs. Two Phase Filter

	7 Two Use-cases on Real Workloads
	7.1 User-centered Application
	7.2 CDN-centered Application
	7.3 Discussion

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References
	A Upper Lower Bound Result
	B Reselecting is upper bound
	C Uniform Upper Bounding Lemma
	D BiUniform Upper Bounding Lemma
	E Renewal Results
	E.1 Truncated Renewal Process is an upper bound

	F Optimal number of hash functions
	G Additional Markov Model Details
	G.1 Markov Model 2-phase
	G.2 Disabling

